




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
吉林省白城市洮南市第十中學2025屆高三第七次考試數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若,,,點C在AB上,且,設,則的值為()A. B. C. D.2.的展開式中,滿足的的系數之和為()A. B. C. D.3.若復數滿足,其中為虛數單位,是的共軛復數,則復數()A. B. C.4 D.54.已知集合,則()A. B. C. D.5.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形6.設,,則的值為()A. B.C. D.7.若函數有且只有4個不同的零點,則實數的取值范圍是()A. B. C. D.8.已知平面向量,,滿足:,,則的最小值為()A.5 B.6 C.7 D.89.在直角中,,,,若,則()A. B. C. D.10.函數的圖象的大致形狀是()A. B. C. D.11.設復數滿足為虛數單位),則()A. B. C. D.12.已知復數為虛數單位),則z的虛部為()A.2 B. C.4 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知兩個單位向量滿足,則向量與的夾角為_____________.14.定義在封閉的平面區域內任意兩點的距離的最大值稱為平面區域的“直徑”.已知銳角三角形的三個點,,,在半徑為的圓上,且,分別以各邊為直徑向外作三個半圓,這三個半圓和構成平面區域,則平面區域的“直徑”的最大值是__________.15.已知數列是各項均為正數的等比數列,若,則的最小值為________.16.已知(2x-1)7=ao+a1x+a2x2+…+a7x7,則a2=____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數f(x)=xlnx,g(x)=,(1)求f(x)的最小值;(2)對任意,都有恒成立,求實數a的取值范圍;(3)證明:對一切,都有成立.18.(12分)已知矩陣,,若矩陣,求矩陣的逆矩陣.19.(12分)某企業原有甲、乙兩條生產線,為了分析兩條生產線的效果,先從兩條生產線生產的大量產品中各抽取了100件產品作為樣本,檢測一項質量指標值.該項指標值落在內的產品視為合格品,否則為不合格品.乙生產線樣本的頻數分布表質量指標合計頻數2184814162100(1)根據甲生產線樣本的頻率分布直方圖,以從樣本中任意抽取一件產品且為合格品的頻率近似代替從甲生產線生產的產品中任意抽取一件產品且為合格品的概率,估計從甲生產線生產的產品中任取5件恰有2件為合格品的概率;(2)現在該企業為提高合格率欲只保留其中一條生產線,根據上述圖表所提供的數據,完成下面的列聯表,并判斷是否有90%把握認為該企業生產的這種產品的質量指標值與生產線有關?若有90%把握,請從合格率的角度分析保留哪條生產線較好?甲生產線乙生產線合計合格品不合格品合計附:,.0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.87920.(12分)交通部門調查在高速公路上的平均車速情況,隨機抽查了60名家庭轎車駕駛員,統計其中有40名男性駕駛員,其中平均車速超過的有30人,不超過的有10人;在其余20名女性駕駛員中,平均車速超過的有5人,不超過的有15人.(1)完成下面的列聯表,并據此判斷是否有的把握認為,家庭轎車平均車速超過與駕駛員的性別有關;平均車速超過的人數平均車速不超過的人數合計男性駕駛員女性駕駛員合計(2)根據這些樣本數據來估計總體,隨機調查3輛家庭轎車,記這3輛車中,駕駛員為女性且平均車速不超過的人數為,假定抽取的結果相互獨立,求的分布列和數學期望.參考公式:其中臨界值表:0.0500.0250.0100.0050.0013.8415.0246.6357.87910.82821.(12分)已知函數(,),.(Ⅰ)討論的單調性;(Ⅱ)若對任意的,恒成立,求實數的取值范圍.22.(10分)如圖,四棱錐中,平面,,,.(I)證明:;(Ⅱ)若是中點,與平面所成的角的正弦值為,求的長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
利用向量的數量積運算即可算出.【詳解】解:,,又在上,故選:【點睛】本題主要考查了向量的基本運算的應用,向量的基本定理的應用及向量共線定理等知識的綜合應用.2、B【解析】
,有,,三種情形,用中的系數乘以中的系數,然后相加可得.【詳解】當時,的展開式中的系數為.當,時,系數為;當,時,系數為;當,時,系數為;故滿足的的系數之和為.故選:B.【點睛】本題考查二項式定理,掌握二項式定理和多項式乘法是解題關鍵.3、D【解析】
根據復數的四則運算法則先求出復數z,再計算它的模長.【詳解】解:復數z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【點睛】本題主要考查了復數的計算問題,要求熟練掌握復數的四則運算以及復數長度的計算公式,是基礎題.4、B【解析】
計算,再計算交集得到答案【詳解】,表示偶數,故.故選:.【點睛】本題考查了集合的交集,意在考查學生的計算能力.5、C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質及推論.6、D【解析】
利用倍角公式求得的值,利用誘導公式求得的值,利用同角三角函數關系式求得的值,進而求得的值,最后利用正切差角公式求得結果.【詳解】,,,,,,,,故選:D.【點睛】該題考查的是有關三角函數求值問題,涉及到的知識點有誘導公式,正切倍角公式,同角三角函數關系式,正切差角公式,屬于基礎題目.7、B【解析】
由是偶函數,則只需在上有且只有兩個零點即可.【詳解】解:顯然是偶函數所以只需時,有且只有2個零點即可令,則令,遞減,且遞增,且時,有且只有2個零點,只需故選:B【點睛】考查函數性質的應用以及根據零點個數確定參數的取值范圍,基礎題.8、B【解析】
建立平面直角坐標系,將已知條件轉化為所設未知量的關系式,再將的最小值轉化為用該關系式表達的算式,利用基本不等式求得最小值.【詳解】建立平面直角坐標系如下圖所示,設,,且,由于,所以..所以,即..當且僅當時取得最小值,此時由得,當時,有最小值為,即,,解得.所以當且僅當時有最小值為.故選:B【點睛】本小題主要考查向量的位置關系、向量的模,考查基本不等式的運用,考查數形結合的數學思想方法,屬于難題.9、C【解析】
在直角三角形ABC中,求得,再由向量的加減運算,運用平面向量基本定理,結合向量數量積的定義和性質:向量的平方即為模的平方,化簡計算即可得到所求值.【詳解】在直角中,,,,,
,
若,則故選C.【點睛】本題考查向量的加減運算和數量積的定義和性質,主要是向量的平方即為模的平方,考查運算能力,屬于中檔題.10、B【解析】
根據函數奇偶性,可排除D;求得及,由導函數符號可判斷在上單調遞增,即可排除AC選項.【詳解】函數易知為奇函數,故排除D.又,易知當時,;又當時,,故在上單調遞增,所以,綜上,時,,即單調遞增.又為奇函數,所以在上單調遞增,故排除A,C.故選:B【點睛】本題考查了根據函數解析式判斷函數圖象,導函數性質與函數圖象關系,屬于中檔題.11、B【解析】
易得,分子分母同乘以分母的共軛復數即可.【詳解】由已知,,所以.故選:B.【點睛】本題考查復數的乘法、除法運算,考查學生的基本計算能力,是一道容易題.12、A【解析】
對復數進行乘法運算,并計算得到,從而得到虛部為2.【詳解】因為,所以z的虛部為2.【點睛】本題考查復數的四則運算及虛部的概念,計算過程要注意.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由得,即得解.【詳解】由題意可知,則.解得,所以,向量與的夾角為.故答案為:【點睛】本題主要考查平面向量的數量積的計算和夾角的計算,意在考查學生對這些知識的理解掌握水平.14、【解析】
先找到平面區域內任意兩點的最大值為,再利用三角恒等變換化簡即可得到最大值.【詳解】由已知及正弦定理,得,所以,,取AB中點E,AC中點F,BC中點G,如圖所示顯然平面區域任意兩點距離最大值為,而,當且僅當時,等號成立.故答案為:.【點睛】本題考查正弦定理在平面幾何中的應用問題,涉及到距離的最值問題,在處理這類問題時,一定要數形結合,本題屬于中檔題.15、40【解析】
設等比數列的公比為,根據,可得,因為,根據均值不等式,即可求得答案.【詳解】設等比數列的公比為,,,等比數列的各項為正數,,,當且僅當,即時,取得最小值.故答案為:.【點睛】本題主要考查了求數列值的最值問題,解題關鍵是掌握等比數列通項公式和靈活使用均值不等式,考查了分析能力和計算能力,屬于中檔題.16、【解析】
根據二項展開式的通項公式即可得結果.【詳解】解:(2x-1)7的展開式通式為:當時,,則.故答案為:【點睛】本題考查求二項展開式指定項的系數,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)((3)見證明【解析】
(1)先求函數導數,再求導函數零點,列表分析導函數符號變化規律確定函數單調性,最后根據函數單調性確定最小值取法;(2)先分離不等式,轉化為對應函數最值問題,利用導數求對應函數最值即得結果;(3)構造兩個函數,再利用兩函數最值關系進行證明.【詳解】(1)當時,單調遞減,當時,單調遞增,所以函數f(x)的最小值為f()=;(2)因為所以問題等價于在上恒成立,記則,因為,令函數f(x)在(0,1)上單調遞減;函數f(x)在(1,+)上單調遞增;即,即實數a的取值范圍為(.(3)問題等價于證明由(1)知道,令函數在(0,1)上單調遞增;函數在(1,+)上單調遞減;所以{,因此,因為兩個等號不能同時取得,所以即對一切,都有成立.【點睛】對于求不等式成立時的參數范圍問題,在可能的情況下把參數分離出來,使不等式一端是含有參數的不等式,另一端是一個區間上具體的函數,這樣就把問題轉化為一端是函數,另一端是參數的不等式,便于問題的解決.但要注意分離參數法不是萬能的,如果分離參數后,得出的函數解析式較為復雜,性質很難研究,就不要使用分離參數法.18、.【解析】試題分析:,所以.試題解析:B.因為,所以.19、(1)0.0081(2)見解析,保留乙生產線較好.【解析】
(1)先求出任取一件產品為合格品的頻率,“從甲生產線生產的產品中任取5件,恰有2件為合格品”就相當于進行5次獨立重復試驗,恰好發生2次的概率用二項分布概率即可解決.(2)獨立性檢驗算出的觀測值即可判斷.【詳解】(1)根據甲生產線樣本的頻率分布直方圖,樣本中任取一件產品為合格品的頻率為:.設“從甲生產線生產的產品中任取一件且為合格品”為事件,事件發生的概率為,則由樣本可估計.那么“從甲生產線生產的產品中任取5件,恰有2件為合格品”就相當于進行5次獨立重復試驗,事件恰好發生2次,其概率為:.(2)列聯表:甲生產線乙生產線合計合格品9096186不合格品10414合計100100200的觀測值,∵,,∴有90%把握認為該企業生產的這種產品的質量指標值與生產線有關.由(1)知甲生產線的合格率為0.9,乙生產線的合格率為,∵,∴保留乙生產線較好.【點睛】此題考查獨立重復性檢驗二項分布概率,獨立性檢驗等知識點,認準特征代入公式即可,屬于較易題目.20、(1)填表見解析;有的把握認為,平均車速超過與性別有關(2)詳見解析【解析】
(1)根據題目所給數據填寫列聯表,計算出的值,由此判斷出有的把握認為,平均車速超過與性別有關.(2)利用二項分布的知識計算出分布列和數學期望.【詳解】(1)平均車速超過的人數平均車速不超過的人數合計男性駕駛員301040女性駕駛員51520合計352560因為,,所以有的把握認為,平均車速超過與性別有關.(2)服從,即,.所以的分布列如下0123的期望【點睛】本小題主要考查列聯表獨立性檢驗,考查二項分布分布列和數學期望,屬于中檔題.21、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)求導得到,討論和兩種情況,得到答案.(Ⅱ)變換得到,設,求,令,故在單調遞增,存在使得,,計算得到答案.【詳解】(Ⅰ)(),當時,在單調遞減,在單調遞增;當時,在單調遞增,在單調遞減.(Ⅱ)(),即,().令(),則,令,,故在單調遞增,注意到,,于是存在使得,可知在單調遞增,在單調遞減.∴.綜上知,.【點睛】本題考查了函數的單調性,恒成立問題,意在考查學生對于導數知識的綜合應用能力.22、(Ⅰ)見解析;(Ⅱ)【解析】
(Ⅰ)取的中點,連接,由,,得三點共線,且,又,再利用線面垂直的判定
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CNCA 063-2024煤的真密度測定氦氣置換法
- T/TMAC 093-2024隧道工程玄武巖纖維噴射混凝土技術規范
- 2025年簡單個人蔬菜大棚承包合同7篇
- LED顯示屏戶外媒體廣告發布合同協議7篇
- 留學中介服務合同6篇
- 勞動合同臺賬模板勞動合同管理臺賬6篇
- 電力工程施工合同與電力工程施工承包合同5篇
- 理論聯系實際談一談你對高質量發展的理解參考答案二
- 中小學生生理衛生知識
- 文字、語音、圖象識別設備項目績效評估報告
- 患者發生過敏性休克應急預案演練腳本模板
- 南京醫科大學招聘考試《綜合能力測試》真題及答案
- 封閉冷通道施工方案
- 2021年新高考全國1卷(含答案解析)
- 《觸不可及》影視鑒賞課件
- 認知知覺障礙的作業治療概述(作業治療技術課件)
- 畢業論文與畢業設計指導課件
- 采購合同一般采購合同
- 形象管理(南開大學)【超星爾雅學習通】章節答案
- 《鮮衣怒馬少年時 唐宋詩詞篇 全集 》讀書筆記PPT模板思維導圖下載
- 施工方案設計(宿舍樓裝修改造)
評論
0/150
提交評論