重慶市涪陵實驗中學2025屆高三4月(二診)調研測試卷(康德版)數學試題_第1頁
重慶市涪陵實驗中學2025屆高三4月(二診)調研測試卷(康德版)數學試題_第2頁
重慶市涪陵實驗中學2025屆高三4月(二診)調研測試卷(康德版)數學試題_第3頁
重慶市涪陵實驗中學2025屆高三4月(二診)調研測試卷(康德版)數學試題_第4頁
重慶市涪陵實驗中學2025屆高三4月(二診)調研測試卷(康德版)數學試題_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

重慶市涪陵實驗中學2025屆高三4月(二診)調研測試卷(康德版)數學試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數在上可導,其導函數為,若函數在處取得極大值,則函數的圖象可能是()A. B.C. D.2.已知函數,,,,則,,的大小關系為()A. B. C. D.3.不等式組表示的平面區域為,則()A., B.,C., D.,4.已知集合,,則=()A. B. C. D.5.如圖所示,正方體ABCD-A1B1C1D1的棱長為1,線段B1D1上有兩個動點E、F且EF=,則下列結論中錯誤的是()A.AC⊥BE B.EF平面ABCDC.三棱錐A-BEF的體積為定值 D.異面直線AE,BF所成的角為定值6.若,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件7.已知為兩條不重合直線,為兩個不重合平面,下列條件中,的充分條件是()A.∥ B.∥C.∥∥ D.8.已知向量與向量平行,,且,則()A. B.C. D.9.世紀產生了著名的“”猜想:任給一個正整數,如果是偶數,就將它減半;如果是奇數,則將它乘加,不斷重復這樣的運算,經過有限步后,一定可以得到.如圖是驗證“”猜想的一個程序框圖,若輸入正整數的值為,則輸出的的值是()A. B. C. D.10.正項等比數列中,,且與的等差中項為4,則的公比是()A.1 B.2 C. D.11.在中,“”是“為鈍角三角形”的()A.充分非必要條件 B.必要非充分條件 C.充要條件 D.既不充分也不必要條件12.如圖,已知三棱錐中,平面平面,記二面角的平面角為,直線與平面所成角為,直線與平面所成角為,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的三個內角A,B,C所對應的邊分別為a,b,c,已知,則________.14.已知函數的圖象在點處的切線方程是,則的值等于__________.15.已知數列滿足對任意,,則數列的通項公式__________.16.已知函數,若在定義域內恒有,則實數的取值范圍是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在平面直角坐標系中,直線的參數方程為(為參數),以坐標原點為極點,軸的非負半軸為極軸且取相同的單位長度建立極坐標系,曲線的極坐標方程為.(1)求曲線與直線的直角坐標方程;(2)若曲線與直線交于兩點,求的值.18.(12分)已知直線與拋物線交于兩點.(1)當點的橫坐標之和為4時,求直線的斜率;(2)已知點,直線過點,記直線的斜率分別為,當取最大值時,求直線的方程.19.(12分)等差數列中,,,分別是下表第一、二、三行中的某一個數,且其中的任何兩個數不在下表的同一列.第一列第二列第三列第一行582第二行4312第三行1669(1)請選擇一個可能的組合,并求數列的通項公式;(2)記(1)中您選擇的的前項和為,判斷是否存在正整數,使得,,成等比數列,若有,請求出的值;若沒有,請說明理由.20.(12分)在邊長為的正方形,分別為的中點,分別為的中點,現沿折疊,使三點重合,構成一個三棱錐.(1)判別與平面的位置關系,并給出證明;(2)求多面體的體積.21.(12分)數列滿足,且.(1)證明:數列是等差數列,并求數列的通項公式;(2)求數列的前項和.22.(10分)已知橢圓經過點,離心率為.(1)求橢圓的方程;(2)經過點且斜率存在的直線交橢圓于兩點,點與點關于坐標原點對稱.連接.求證:存在實數,使得成立.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

由題意首先確定導函數的符號,然后結合題意確定函數在區間和處函數的特征即可確定函數圖像.【詳解】函數在上可導,其導函數為,且函數在處取得極大值,當時,;當時,;當時,.時,,時,,當或時,;當時,.故選:【點睛】根據函數取得極大值,判斷導函數在極值點附近左側為正,右側為負,由正負情況討論圖像可能成立的選項,是判斷圖像問題常見方法,有一定難度.2、B【解析】

可判斷函數在上單調遞增,且,所以.【詳解】在上單調遞增,且,所以.故選:B【點睛】本題主要考查了函數單調性的判定,指數函數與對數函數的性質,利用單調性比大小等知識,考查了學生的運算求解能力.3、D【解析】

根據題意,分析不等式組的幾何意義,可得其表示的平面區域,設,分析的幾何意義,可得的最小值,據此分析選項即可得答案.【詳解】解:根據題意,不等式組其表示的平面區域如圖所示,其中,,

設,則,的幾何意義為直線在軸上的截距的2倍,

由圖可得:當過點時,直線在軸上的截距最大,即,當過點原點時,直線在軸上的截距最小,即,故AB錯誤;

設,則的幾何意義為點與點連線的斜率,由圖可得最大可到無窮大,最小可到無窮小,故C錯誤,D正確;故選:D.【點睛】本題考查本題考查二元一次不等式的性質以及應用,關鍵是對目標函數幾何意義的認識,屬于基礎題.4、C【解析】

計算,,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,意在考查學生的計算能力.5、D【解析】

A.通過線面的垂直關系可證真假;B.根據線面平行可證真假;C.根據三棱錐的體積計算的公式可證真假;D.根據列舉特殊情況可證真假.【詳解】A.因為,所以平面,又因為平面,所以,故正確;B.因為,所以,且平面,平面,所以平面,故正確;C.因為為定值,到平面的距離為,所以為定值,故正確;D.當,,取為,如下圖所示:因為,所以異面直線所成角為,且,當,,取為,如下圖所示:因為,所以四邊形是平行四邊形,所以,所以異面直線所成角為,且,由此可知:異面直線所成角不是定值,故錯誤.故選:D.【點睛】本題考查立體幾何中的綜合應用,涉及到線面垂直與線面平行的證明、異面直線所成角以及三棱錐體積的計算,難度較難.注意求解異面直線所成角時,將直線平移至同一平面內.6、A【解析】

本題根據基本不等式,結合選項,判斷得出充分性成立,利用“特殊值法”,通過特取的值,推出矛盾,確定必要性不成立.題目有一定難度,注重重要知識、基礎知識、邏輯推理能力的考查.【詳解】當時,,則當時,有,解得,充分性成立;當時,滿足,但此時,必要性不成立,綜上所述,“”是“”的充分不必要條件.【點睛】易出現的錯誤有,一是基本不等式掌握不熟,導致判斷失誤;二是不能靈活的應用“賦值法”,通過特取的值,從假設情況下推出合理結果或矛盾結果.7、D【解析】

根據面面垂直的判定定理,對選項中的命題進行分析、判斷正誤即可.【詳解】對于A,當,,時,則平面與平面可能相交,,,故不能作為的充分條件,故A錯誤;對于B,當,,時,則,故不能作為的充分條件,故B錯誤;對于C,當,,時,則平面與平面相交,,,故不能作為的充分條件,故C錯誤;對于D,當,,,則一定能得到,故D正確.故選:D.【點睛】本題考查了面面垂直的判斷問題,屬于基礎題.8、B【解析】

設,根據題意得出關于、的方程組,解出這兩個未知數的值,即可得出向量的坐標.【詳解】設,且,,由得,即,①,由,②,所以,解得,因此,.故選:B.【點睛】本題考查向量坐標的求解,涉及共線向量的坐標表示和向量數量積的坐標運算,考查計算能力,屬于中等題.9、C【解析】

列出循環的每一步,可得出輸出的的值.【詳解】,輸入,,不成立,是偶數成立,則;,不成立,是偶數成立,則;,不成立,是偶數成立,則;,不成立,是偶數不成立,則;,不成立,是偶數成立,則;,不成立,是偶數成立,則;,不成立,是偶數成立,則;,不成立,是偶數成立,則;,成立,跳出循環,輸出的值為.故選:C.【點睛】本題考查利用程序框圖計算輸出結果,考查計算能力,屬于基礎題.10、D【解析】

設等比數列的公比為q,,運用等比數列的性質和通項公式,以及等差數列的中項性質,解方程可得公比q.【詳解】由題意,正項等比數列中,,可得,即,與的等差中項為4,即,設公比為q,則,則負的舍去,故選D.【點睛】本題主要考查了等差數列的中項性質和等比數列的通項公式的應用,其中解答中熟記等比數列通項公式,合理利用等比數列的性質是解答的關鍵,著重考查了方程思想和運算能力,屬于基礎題.11、C【解析】分析:從兩個方向去判斷,先看能推出三角形的形狀是銳角三角形,而非鈍角三角形,從而得到充分性不成立,再看當三角形是鈍角三角形時,也推不出成立,從而必要性也不滿足,從而選出正確的結果.詳解:由題意可得,在中,因為,所以,因為,所以,,結合三角形內角的條件,故A,B同為銳角,因為,所以,即,所以,因此,所以是銳角三角形,不是鈍角三角形,所以充分性不滿足,反之,若是鈍角三角形,也推不出“,故必要性不成立,所以為既不充分也不必要條件,故選D.點睛:該題考查的是有關充分必要條件的判斷問題,在解題的過程中,需要用到不等式的等價轉化,余弦的和角公式,誘導公式等,需要明確對應此類問題的解題步驟,以及三角形形狀對應的特征.12、A【解析】

作于,于,分析可得,,再根據正弦的大小關系判斷分析得,再根據線面角的最小性判定即可.【詳解】作于,于.因為平面平面,平面.故,故平面.故二面角為.又直線與平面所成角為,因為,故.故,當且僅當重合時取等號.又直線與平面所成角為,且為直線與平面內的直線所成角,故,當且僅當平面時取等號.故.故選:A【點睛】本題主要考查了線面角與線線角的大小判斷,需要根據題意確定角度的正弦的關系,同時運用線面角的最小性進行判定.屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

利用正弦定理邊化角可得,從而可得,進而求解.【詳解】由,由正弦定理可得,即,整理可得,又因為,所以,因為,所以,故答案為:【點睛】本題主要考查了正弦定理解三角形、兩角和的正弦公式,屬于基礎題.14、【解析】

利用導數的幾何意義即可解決.【詳解】由已知,,,故.故答案為:.【點睛】本題考查導數的幾何意義,要注意在某點的切線與過某點的切線的區別,本題屬于基礎題.15、【解析】

利用累加法求得數列的通項公式,由此求得的通項公式.【詳解】由題,所以故答案為:【點睛】本小題主要考查累加法求數列的通項公式,屬于基礎題.16、【解析】

根據指數函數與對數函數圖象可將原題轉化為恒成立問題,湊而可知的圖象在過原點且與兩函數相切的兩條切線之間;利用過一點的曲線切線的求法可求得兩切線斜率,結合分母不為零的條件可最終確定的取值范圍.【詳解】由指數函數與對數函數圖象可知:,恒成立可轉化為恒成立,即恒成立,,即是夾在函數與的圖象之間,的圖象在過原點且與兩函數相切的兩條切線之間.設過原點且與相切的直線與函數相切于點,則切線斜率,解得:;設過原點且與相切的直線與函數相切于點,則切線斜率,解得:;當時,,又,滿足題意;綜上所述:實數的取值范圍為.【點睛】本題考查恒成立問題的求解,重點考查了導數幾何意義應用中的過一點的曲線切線的求解方法;關鍵是能夠結合指數函數和對數函數圖象將問題轉化為切線斜率的求解問題;易錯點是忽略分母不為零的限制,忽略對于臨界值能否取得的討論.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)曲線的直角坐標方程為;直線的直角坐標方程為(2)【解析】

(1)由公式可化極坐標方程為直角坐標方程,消參法可化參數方程為普通方程;(2)聯立兩曲線方程,解方程組得兩交點坐標,從而得兩點間距離.【詳解】解:(1)曲線的直角坐標方程為直線的直角坐標方程為(2)據解,得或【點睛】本題考查極坐標與直角坐標的互化,考查參數方程與普通方程的互化,屬于基礎題.18、(1)(2)【解析】

(1)設,根據直線的斜率公式即可求解;(2)設直線的方程為,聯立直線與拋物線方程,由韋達定理得,,結合直線的斜率公式得到,換元后討論的符號,求最值可求解.【詳解】(1)設,因為,即直線的斜率為1.(2)顯然直線的斜率存在,設直線的方程為.聯立方程組,可得則,令,則則當時,;當且僅當,即時,解得時,取“=”號,當時,;當時,綜上所述,當時,取得最大值,此時直線的方程是.【點睛】本題主要考查了直線的斜率公式,直線與拋物線的位置關系,換元法,均值不等式,考查了運算能力,屬于難題.19、(1)見解析,或;(2)存在,.【解析】

(1)滿足題意有兩種組合:①,,,②,,,分別計算即可;(2)由(1)分別討論兩種情況,假設存在正整數,使得,,成等比數列,即,解方程是否存在正整數解即可.【詳解】(1)由題意可知:有兩種組合滿足條件:①,,,此時等差數列,,,所以其通項公式為.②,,,此時等差數列,,,所以其通項公式為.(2)若選擇①,.則.若,,成等比數列,則,即,整理,得,即,此方程無正整數解,故不存在正整數,使,,成等比數列.若選則②,,則,若,,成等比數列,則,即,整理得,因為為正整數,所以.故存在正整數,使,,成等比數列.【點睛】本題考查等差數列的通項公式及前n項和,涉及到等比數列的性質,是一道中檔題.20、(1)平行,證明見解析;(2).【解析】

(1)由題意及圖形的翻折規律可知應是的一條中位線,利用

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論