




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認(rèn)領(lǐng)
文檔簡介
吉林省長春市朝陽區(qū)實驗中學(xué)2025年高三二模沖刺(4)數(shù)學(xué)試題考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應(yīng)位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準(zhǔn)考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設(shè)函數(shù),的定義域都為,且是奇函數(shù),是偶函數(shù),則下列結(jié)論正確的是()A.是偶函數(shù) B.是奇函數(shù)C.是奇函數(shù) D.是奇函數(shù)2.已知,,則()A. B. C. D.3.函數(shù)()的圖象的大致形狀是()A. B. C. D.4.已知平行于軸的直線分別交曲線于兩點,則的最小值為()A. B. C. D.5.的展開式中,項的系數(shù)為()A.-23 B.17 C.20 D.636.在我國傳統(tǒng)文化“五行”中,有“金、木、水、火、土”五個物質(zhì)類別,在五者之間,有一種“相生”的關(guān)系,具體是:金生水、水生木、木生火、火生土、土生金.從五行中任取兩個,這二者具有相生關(guān)系的概率是()A.0.2 B.0.5 C.0.4 D.0.87.已知為虛數(shù)單位,復(fù)數(shù)滿足,則復(fù)數(shù)在復(fù)平面內(nèi)對應(yīng)的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.平行四邊形中,已知,,點、分別滿足,,且,則向量在上的投影為()A.2 B. C. D.9.在中,角、、所對的邊分別為、、,若,則()A. B. C. D.10.已知m,n是兩條不同的直線,,是兩個不同的平面,給出四個命題:①若,,,則;②若,,則;③若,,,則;④若,,,則其中正確的是()A.①② B.③④ C.①④ D.②④11.已知變量x,y間存在線性相關(guān)關(guān)系,其數(shù)據(jù)如下表,回歸直線方程為,則表中數(shù)據(jù)m的值為()變量x0123變量y35.57A.0.9 B.0.85 C.0.75 D.0.512.一個四面體所有棱長都是4,四個頂點在同一個球上,則球的表面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.的展開式中的系數(shù)為__________(用具體數(shù)據(jù)作答).14.直線與拋物線交于兩點,若,則弦的中點到直線的距離等于________.15.若且時,不等式恒成立,則實數(shù)a的取值范圍為________.16.已知集合,,則__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù),且.(1)求的解析式;(2)已知,若對任意的,總存在,使得成立,求的取值范圍.18.(12分)已知函數(shù),其中,.(1)當(dāng)時,求的值;(2)當(dāng)?shù)淖钚≌芷跒闀r,求在上的值域.19.(12分)已知函數(shù)(,),.(Ⅰ)討論的單調(diào)性;(Ⅱ)若對任意的,恒成立,求實數(shù)的取值范圍.20.(12分)已知拋物線和圓,傾斜角為45°的直線過拋物線的焦點,且與圓相切.(1)求的值;(2)動點在拋物線的準(zhǔn)線上,動點在上,若在點處的切線交軸于點,設(shè).求證點在定直線上,并求該定直線的方程.21.(12分)已知等差數(shù)列an,和等比數(shù)列b(I)求數(shù)列{an}(II)求數(shù)列n2an?a22.(10分)我國在2018年社保又出新的好消息,之前流動就業(yè)人員跨地區(qū)就業(yè)后,社保轉(zhuǎn)移接續(xù)的手續(xù)往往比較繁瑣,費時費力.社保改革后將簡化手續(xù),深得流動就業(yè)人員的贊譽.某市社保局從2018年辦理社保的人員中抽取300人,得到其辦理手續(xù)所需時間(天)與人數(shù)的頻數(shù)分布表:時間人數(shù)156090754515(1)若300名辦理社保的人員中流動人員210人,非流動人員90人,若辦理時間超過4天的人員里非流動人員有60人,請完成辦理社保手續(xù)所需時間與是否流動人員的列聯(lián)表,并判斷是否有95%的把握認(rèn)為“辦理社保手續(xù)所需時間與是否流動人員”有關(guān).列聯(lián)表如下流動人員非流動人員總計辦理社保手續(xù)所需時間不超過4天辦理社保手續(xù)所需時間超過4天60總計21090300(2)為了改進工作作風(fēng),提高效率,從抽取的300人中辦理時間為流動人員中利用分層抽樣,抽取12名流動人員召開座談會,其中3人要求交書面材料,3人中辦理的時間為的人數(shù)為,求出分布列及期望值.附:0.100.050.0100.0052.7063.8416.6357.879
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
根據(jù)函數(shù)奇偶性的性質(zhì)即可得到結(jié)論.【詳解】解:是奇函數(shù),是偶函數(shù),,,,故函數(shù)是奇函數(shù),故錯誤,為偶函數(shù),故錯誤,是奇函數(shù),故正確.為偶函數(shù),故錯誤,故選:.【點睛】本題主要考查函數(shù)奇偶性的判斷,根據(jù)函數(shù)奇偶性的定義是解決本題的關(guān)鍵.2、D【解析】
分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎(chǔ)題.3、C【解析】
對x分類討論,去掉絕對值,即可作出圖象.【詳解】故選C.【點睛】識圖常用的方法(1)定性分析法:通過對問題進行定性的分析,從而得出圖象的上升(或下降)的趨勢,利用這一特征分析解決問題;(2)定量計算法:通過定量的計算來分析解決問題;(3)函數(shù)模型法:由所提供的圖象特征,聯(lián)想相關(guān)函數(shù)模型,利用這一函數(shù)模型來分析解決問題.4、A【解析】
設(shè)直線為,用表示出,,求出,令,利用導(dǎo)數(shù)求出單調(diào)區(qū)間和極小值、最小值,即可求出的最小值.【詳解】解:設(shè)直線為,則,,而滿足,那么設(shè),則,函數(shù)在上單調(diào)遞減,在上單調(diào)遞增,所以故選:.【點睛】本題考查導(dǎo)數(shù)知識的運用:求單調(diào)區(qū)間和極值、最值,考查化簡整理的運算能力,正確求導(dǎo)確定函數(shù)的最小值是關(guān)鍵,屬于中檔題.5、B【解析】
根據(jù)二項式展開式的通項公式,結(jié)合乘法分配律,求得的系數(shù).【詳解】的展開式的通項公式為.則①出,則出,該項為:;②出,則出,該項為:;③出,則出,該項為:;綜上所述:合并后的項的系數(shù)為17.故選:B【點睛】本小題考查二項式定理及展開式系數(shù)的求解方法等基礎(chǔ)知識,考查理解能力,計算能力,分類討論和應(yīng)用意識.6、B【解析】
利用列舉法,結(jié)合古典概型概率計算公式,計算出所求概率.【詳解】從五行中任取兩個,所有可能的方法為:金木、金水、金火、金土、木水、木火、木土、水火、水土、火土,共種,其中由相生關(guān)系的有金水、木水、木火、火土、金土,共種,所以所求的概率為.故選:B【點睛】本小題主要考查古典概型的計算,屬于基礎(chǔ)題.7、B【解析】
求出復(fù)數(shù),得出其對應(yīng)點的坐標(biāo),確定所在象限.【詳解】由題意,對應(yīng)點坐標(biāo)為,在第二象限.故選:B.【點睛】本題考查復(fù)數(shù)的幾何意義,考查復(fù)數(shù)的除法運算,屬于基礎(chǔ)題.8、C【解析】
將用向量和表示,代入可求出,再利用投影公式可得答案.【詳解】解:,得,則向量在上的投影為.故選:C.【點睛】本題考查向量的幾何意義,考查向量的線性運算,將用向量和表示是關(guān)鍵,是基礎(chǔ)題.9、D【解析】
利用余弦定理角化邊整理可得結(jié)果.【詳解】由余弦定理得:,整理可得:,.故選:.【點睛】本題考查余弦定理邊角互化的應(yīng)用,屬于基礎(chǔ)題.10、D【解析】
根據(jù)面面垂直的判定定理可判斷①;根據(jù)空間面面平行的判定定理可判斷②;根據(jù)線面平行的判定定理可判斷③;根據(jù)面面垂直的判定定理可判斷④.【詳解】對于①,若,,,,兩平面相交,但不一定垂直,故①錯誤;對于②,若,,則,故②正確;對于③,若,,,當(dāng),則與不平行,故③錯誤;對于④,若,,,則,故④正確;故選:D【點睛】本題考查了線面平行的判定定理、面面平行的判定定理以及面面垂直的判定定理,屬于基礎(chǔ)題.11、A【解析】
計算,代入回歸方程可得.【詳解】由題意,,∴,解得.故選:A.【點睛】本題考查線性回歸直線方程,解題關(guān)鍵是掌握性質(zhì):線性回歸直線一定過中心點.12、A【解析】
將正四面體補成正方體,通過正方體的對角線與球的半徑關(guān)系,求解即可.【詳解】解:如圖,將正四面體補形成一個正方體,正四面體的外接球與正方體的外接球相同,∵四面體所有棱長都是4,∴正方體的棱長為,設(shè)球的半徑為,則,解得,所以,故選:A.【點睛】本題主要考查多面體外接球問題,解決本題的關(guān)鍵在于,巧妙構(gòu)造正方體,利用正方體的外接球的直徑為正方體的對角線,從而將問題巧妙轉(zhuǎn)化,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用二項展開式的通項公式可求的系數(shù).【詳解】的展開式的通項公式為,令,故,故的系數(shù)為.故答案為:.【點睛】本題考查二項展開式中指定項的系數(shù),注意利用通項公式來計算,本題屬于容易題.14、【解析】
由已知可知直線過拋物線的焦點,求出弦的中點到拋物線準(zhǔn)線的距離,進一步得到弦的中點到直線的距離.【詳解】解:如圖,直線過定點,,而拋物線的焦點為,,弦的中點到準(zhǔn)線的距離為,則弦的中點到直線的距離等于.故答案為:.【點睛】本題考查拋物線的簡單性質(zhì),考查直線與拋物線位置關(guān)系的應(yīng)用,體現(xiàn)了數(shù)學(xué)轉(zhuǎn)化思想方法,屬于中檔題.15、【解析】
將不等式兩邊同時平方進行變形,然后得到對應(yīng)不等式組,對的取值進行分類,將問題轉(zhuǎn)化為二次函數(shù)在區(qū)間上恒正、恒負(fù)時求參數(shù)范圍,列出對應(yīng)不等式組,即可求解出的取值范圍.【詳解】因為,所以,所以,所以,所以或,當(dāng)時,對且不成立,當(dāng)時,取,顯然不滿足,所以,所以,解得;當(dāng)時,取,顯然不滿足,所以,所以,解得,綜上可得的取值范圍是:.故答案為:.【點睛】本題考查根據(jù)不等式恒成立求解參數(shù)范圍,難度較難.根據(jù)不等式恒成立求解參數(shù)范圍的兩種常用方法:(1)分類討論法:分析參數(shù)的臨界值,對參數(shù)分類討論;(2)參變分離法:將參數(shù)單獨分離出來,再以函數(shù)的最值與參數(shù)的大小關(guān)系求解出參數(shù)范圍.16、【解析】
解一元二次不等式化簡集合,再進行集合的交運算,即可得到答案.【詳解】,,.故答案為:.【點睛】本題考查一元二次不等式的求解、集合的交運算,考查運算求解能力,屬于基礎(chǔ)題.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)由,可求出的值,進而可求得的解析式;(2)分別求得和的值域,再結(jié)合兩個函數(shù)的值域間的關(guān)系可求出的取值范圍.【詳解】(1)因為,所以,解得,故.(2)因為,所以,所以,則,圖象的對稱軸是.因為,所以,則,解得,故的取值范圍是.【點睛】本題考查了三角函數(shù)的恒等變換,考查了二次函數(shù)及三角函數(shù)值域的求法,考查了學(xué)生的計算求解能力,屬于中檔題.18、(1)(2)【解析】
(1)根據(jù),得到函數(shù),然后,直接求解的值;(2)首先,化簡函數(shù),然后,結(jié)合周期公式,得到,再結(jié)合,及正弦函數(shù)的性質(zhì)解答即可.【詳解】(1)因為,所以(2)因為即因為,所以所以因為所以所以當(dāng)時,.當(dāng)時,(最大值)當(dāng)時,在是增函數(shù),在是減函數(shù).的值域是.【點睛】本題主要考查了簡單角的三角函數(shù)值的求解方法,兩角和與差的正弦、余弦公式,三角函數(shù)的圖象與性質(zhì)等知識,考查了運算求解能力,屬于中檔題.19、(Ⅰ)見解析(Ⅱ)【解析】
(Ⅰ)求導(dǎo)得到,討論和兩種情況,得到答案.(Ⅱ)變換得到,設(shè),求,令,故在單調(diào)遞增,存在使得,,計算得到答案.【詳解】(Ⅰ)(),當(dāng)時,在單調(diào)遞減,在單調(diào)遞增;當(dāng)時,在單調(diào)遞增,在單調(diào)遞減.(Ⅱ)(),即,().令(),則,令,,故在單調(diào)遞增,注意到,,于是存在使得,可知在單調(diào)遞增,在單調(diào)遞減.∴.綜上知,.【點睛】本題考查了函數(shù)的單調(diào)性,恒成立問題,意在考查學(xué)生對于導(dǎo)數(shù)知識的綜合應(yīng)用能力.20、(1);(2)點在定直線上.【解析】
(1)設(shè)出直線的方程為,由直線和圓相切的條件:,解得;(2)設(shè)出,運用導(dǎo)數(shù)求得切線的斜率,求得為切點的切線方程,再由向量的坐標(biāo)表示,可得在定直線上;【詳解】解:(1)依題意設(shè)直線的方程為,由已知得:圓的圓心,半徑,因為直線與圓相切,所以圓心到直線的距離,即,解得或(舍去).所以;(2)依題意設(shè),由(1)知拋物線方程為,所以,所以,設(shè),則以為切點的切線的斜率為,所以切線的方程為.令,,即交軸于點坐標(biāo)為,所以,,,.設(shè)點坐標(biāo)為,則,所以點在定直線上.【點睛】本題考查拋物線的方程和性質(zhì),直線與圓的位置關(guān)系的判斷,考查直線方程和圓方程的運用,以及切線方程的求法,考查化簡整理的運算能力,屬于綜合題.21、(I)an=2n-1,bn=【解析】
(I)直接利用等差數(shù)列,等比數(shù)列公式聯(lián)立方程計算得到答案.(II)n2【詳解】(I)a1=b解得d=2q=3,故an=2n-1(II)n=14+【點睛】本題考查了等差數(shù)列,等比數(shù)列,裂項求和,意在考查學(xué)生對于數(shù)列公式方法的綜合應(yīng)用.22、(1)列聯(lián)表見解析,有;(2)分布列見解析,.【解析】
(1)根據(jù)題意,結(jié)合已知數(shù)據(jù)即可填寫列聯(lián)表,計算出的觀測值,即可進行判斷;(2)先計算出時間在和選取的人數(shù),再求出的可取值,根據(jù)古典概型的概率計算公式求得分布列,結(jié)合分布列即可求得數(shù)學(xué)期望.
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川省遂寧市大英縣江平初中達標(biāo)名校2025屆初三下學(xué)期第一學(xué)段考生物試題含解析
- 吐魯番職業(yè)技術(shù)學(xué)院《平面圖形語言》2023-2024學(xué)年第二學(xué)期期末試卷
- 渭南師范學(xué)院《增材制造技術(shù)基礎(chǔ)》2023-2024學(xué)年第二學(xué)期期末試卷
- 外貿(mào)混凝土視頻講解課件
- 工業(yè)儀器校準(zhǔn)實驗室租賃及全面服務(wù)合同
- 工業(yè)廢氣凈化設(shè)備質(zhì)保期保養(yǎng)與環(huán)保效果監(jiān)測合同
- 生物工程潔凈室使用權(quán)及設(shè)施升級租賃協(xié)議
- 遠(yuǎn)洋貨輪船員勞務(wù)合作合同
- 影視群眾演員福利待遇保密協(xié)議補充條款
- 高端制造行業(yè)有限責(zé)任合伙協(xié)議(LLP)
- 中國古代文學(xué)史 馬工程課件(下)06第七編明代文學(xué) 第五章 明代戲曲
- 110kv主變壓器選擇計算書
- 2017年特高壓互聯(lián)電網(wǎng)穩(wěn)定及無功電壓調(diào)度運行
- 客運駕駛?cè)藦臉I(yè)行為定期考核制度
- 《新能源材料與器件》教學(xué)課件-04電化學(xué)能源材料與器件
- 2022年同等學(xué)力人員申請碩士學(xué)位日語水平統(tǒng)一考試真題
- 城軌道交通人因事故分析及評價研究
- T∕CADERM 2002-2018 胸痛中心(基層版)建設(shè)與評估標(biāo)準(zhǔn)
- ZYWL-4000型履帶式鉆機
- 50MPa路面抗折混凝土配合比
- 護士壓力與情緒管理PPT課件
評論
0/150
提交評論