




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
匯文中學2025屆高三5月畢業考試數學試題文試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設函數,則,的大致圖象大致是的()A. B.C. D.2.已知集合A={﹣2,﹣1,0,1,2},B={x|x2﹣4x﹣5<0},則A∩B=()A.{﹣2,﹣1,0} B.{﹣1,0,1,2} C.{﹣1,0,1} D.{0,1,2}3.已知,,,若,則正數可以為()A.4 B.23 C.8 D.174.已知函數,則的值等于()A.2018 B.1009 C.1010 D.20205.已知函數的圖象與直線的相鄰交點間的距離為,若定義,則函數,在區間內的圖象是()A. B.C. D.6.已知是定義是上的奇函數,滿足,當時,,則函數在區間上的零點個數是()A.3 B.5 C.7 D.97.做拋擲一枚骰子的試驗,當出現1點或2點時,就說這次試驗成功,假設骰子是質地均勻的.則在3次這樣的試驗中成功次數X的期望為()A.13 B.18.已知函數,其中,,其圖象關于直線對稱,對滿足的,,有,將函數的圖象向左平移個單位長度得到函數的圖象,則函數的單調遞減區間是()A. B.C. D.9.已知數列中,,若對于任意的,不等式恒成立,則實數的取值范圍為()A. B.C. D.10.已知三棱錐的四個頂點都在球的球面上,平面,是邊長為的等邊三角形,若球的表面積為,則直線與平面所成角的正切值為()A. B. C. D.11.已知函數在區間有三個零點,,,且,若,則的最小正周期為()A. B. C. D.12.方程在區間內的所有解之和等于()A.4 B.6 C.8 D.10二、填空題:本題共4小題,每小題5分,共20分。13.某地區連續5天的最低氣溫(單位:℃)依次為8,,,0,2,則該組數據的標準差為_______.14.正四面體的一個頂點是圓柱上底面的圓心,另外三個頂點圓柱下底面的圓周上,記正四面體的體積為,圓柱的體積為,則的值是______.15.點到直線的距離為________16.設Sn為數列{an}的前n項和,若an0,a1=1,且2Sn=an(an+t),n∈N*,則S10=_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知橢圓,點為半圓上一動點,若過作橢圓的兩切線分別交軸于、兩點.(1)求證:;(2)當時,求的取值范圍.18.(12分)[選修45:不等式選講]已知都是正實數,且,求證:.19.(12分)已知函數.(1)若,證明:當時,;(2)若在只有一個零點,求的值.20.(12分)如圖,在三棱柱中,已知四邊形為矩形,,,,的角平分線交于.(1)求證:平面平面;(2)求二面角的余弦值.21.(12分)在直角坐標系中,圓C的參數方程(為參數),以O為極點,x軸的非負半軸為極軸建立極坐標系.(1)求圓C的極坐標方程;(2)直線l的極坐標方程是,射線與圓C的交點為O、P,與直線l的交點為Q,求線段的長.22.(10分)在中,角的對邊分別為,且.(1)求角的大小;(2)已知外接圓半徑,求的周長.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
采用排除法:通過判斷函數的奇偶性排除選項A;通過判斷特殊點的函數值符號排除選項D和選項C即可求解.【詳解】對于選項A:由題意知,函數的定義域為,其關于原點對稱,因為,所以函數為奇函數,其圖象關于原點對稱,故選A排除;對于選項D:因為,故選項D排除;對于選項C:因為,故選項C排除;故選:B【點睛】本題考查利用函數的奇偶性和特殊點函數值符號判斷函數圖象;考查運算求解能力和邏輯推理能力;選取合適的特殊點并判斷其函數值符號是求解本題的關鍵;屬于中檔題、常考題型.2、D【解析】
解一元二次不等式化簡集合,再由集合的交集運算可得選項.【詳解】因為集合,故選:D.【點睛】本題考查集合的交集運算,屬于基礎題.3、C【解析】
首先根據對數函數的性質求出的取值范圍,再代入驗證即可;【詳解】解:∵,∴當時,滿足,∴實數可以為8.故選:C【點睛】本題考查對數函數的性質的應用,屬于基礎題.4、C【解析】
首先,根據二倍角公式和輔助角公式化簡函數解析式,根據所求函數的周期性,得到其周期為4,然后借助于三角函數的周期性確定其值即可.【詳解】解:.,,的周期為,,,,,..故選:C【點睛】本題重點考查了三角函數的圖象與性質、三角恒等變換等知識,掌握輔助角公式化簡函數解析式是解題的關鍵,屬于中檔題.5、A【解析】
由題知,利用求出,再根據題給定義,化簡求出的解析式,結合正弦函數和正切函數圖象判斷,即可得出答案.【詳解】根據題意,的圖象與直線的相鄰交點間的距離為,所以的周期為,則,所以,由正弦函數和正切函數圖象可知正確.故選:A.【點睛】本題考查三角函數中正切函數的周期和圖象,以及正弦函數的圖象,解題關鍵是對新定義的理解.6、D【解析】
根據是定義是上的奇函數,滿足,可得函數的周期為3,再由奇函數的性質結合已知可得,利用周期性可得函數在區間上的零點個數.【詳解】∵是定義是上的奇函數,滿足,,可得,
函數的周期為3,
∵當時,,
令,則,解得或1,
又∵函數是定義域為的奇函數,
∴在區間上,有.
由,取,得,得,
∴.
又∵函數是周期為3的周期函數,
∴方程=0在區間上的解有共9個,
故選D.【點睛】本題考查根的存在性及根的個數判斷,考查抽象函數周期性的應用,考查邏輯思維能力與推理論證能力,屬于中檔題.7、C【解析】
每一次成功的概率為p=26=【詳解】每一次成功的概率為p=26=13故選:C.【點睛】本題考查了二項分布求數學期望,意在考查學生的計算能力和應用能力.8、B【解析】
根據已知得到函數兩個對稱軸的距離也即是半周期,由此求得的值,結合其對稱軸,求得的值,進而求得解析式.根據圖像變換的知識求得的解析式,再利用三角函數求單調區間的方法,求得的單調遞減區間.【詳解】解:已知函數,其中,,其圖像關于直線對稱,對滿足的,,有,∴.再根據其圖像關于直線對稱,可得,.∴,∴.將函數的圖像向左平移個單位長度得到函數的圖像.令,求得,則函數的單調遞減區間是,,故選B.【點睛】本小題主要考查三角函數圖像與性質求函數解析式,考查三角函數圖像變換,考查三角函數單調區間的求法,屬于中檔題.9、B【解析】
先根據題意,對原式進行化簡可得,然后利用累加法求得,然后不等式恒成立轉化為恒成立,再利用函數性質解不等式即可得出答案.【詳解】由題,即由累加法可得:即對于任意的,不等式恒成立即令可得且即可得或故選B【點睛】本題主要考查了數列的通項的求法以及函數的性質的運用,屬于綜合性較強的題目,解題的關鍵是能夠由遞推數列求出通項公式和后面的轉化函數,屬于難題.10、C【解析】
設為中點,先證明平面,得出為所求角,利用勾股定理計算,得出結論.【詳解】設分別是的中點平面是等邊三角形又平面為與平面所成的角是邊長為的等邊三角形,且為所在截面圓的圓心球的表面積為球的半徑平面本題正確選項:【點睛】本題考查了棱錐與外接球的位置關系問題,關鍵是能夠通過垂直關系得到直線與平面所求角,再利用球心位置來求解出線段長,屬于中檔題.11、C【解析】
根據題意,知當時,,由對稱軸的性質可知和,即可求出,即可求出的最小正周期.【詳解】解:由于在區間有三個零點,,,當時,,∴由對稱軸可知,滿足,即.同理,滿足,即,∴,,所以最小正周期為:.故選:C.【點睛】本題考查正弦型函數的最小正周期,涉及函數的對稱性的應用,考查計算能力.12、C【解析】
畫出函數和的圖像,和均關于點中心對稱,計算得到答案.【詳解】,驗證知不成立,故,畫出函數和的圖像,易知:和均關于點中心對稱,圖像共有8個交點,故所有解之和等于.故選:.【點睛】本題考查了方程解的問題,意在考查學生的計算能力和應用能力,確定函數關于點中心對稱是解題的關鍵.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求出這組數據的平均數,再求出這組數據的方差,由此能求出該組數據的標準差.【詳解】解:某地區連續5天的最低氣溫(單位:依次為8,,,0,2,平均數為:,該組數據的方差為:,該組數據的標準差為1.故答案為:1.【點睛】本題考查一組數據據的標準差的求法,考查平均數、方差、標準差的定義等基礎知識,考查運算求解能力,屬于基礎題.14、【解析】
設正四面體的棱長為,求出底面外接圓的半徑與高,代入體積公式求解.【詳解】解:設正四面體的棱長為,則底面積為,底面外接圓的半徑為,高為.∴正四面體的體積,圓柱的體積.則.故答案為:.【點睛】本題主要考查多面體與旋轉體體積的求法,考查計算能力,屬于中檔題.15、2【解析】
直接根據點到直線的距離公式即可求出。【詳解】依據點到直線的距離公式,點到直線的距離為。【點睛】本題主要考查點到直線的距離公式的應用。16、55【解析】
由求出.由,可得,兩式相減,可得數列是以1為首項,1為公差的等差數列,即求.【詳解】由題意,當n=1時,,當時,由,可得,兩式相減,可得,整理得,,即,∴數列是以1為首項,1為公差的等差數列,.故答案為:55.【點睛】本題考查求數列的前項和,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】
(1)分兩種情況討論:①兩切線、中有一條切線斜率不存在時,求出兩切線的方程,驗證結論成立;②兩切線、的斜率都存在,可設切線的方程為,將該直線的方程與橢圓的方程聯立,由可得出關于的二次方程,利用韋達定理得出兩切線的斜率之積為,進而可得出結論;(2)求出點、的坐標,利用兩點間的距離公式結合韋達定理得出,換元,可得出,利用二次函數的基本性質可求得的取值范圍.【詳解】(1)由于點在半圓上,則.①當兩切線、中有一條切線斜率不存在時,可求得兩切線方程為,或,,此時;②當兩切線、的斜率都存在時,設切線的方程為(、的斜率分別為、),,,,.綜上所述,;(2)根據題意得、,,令,則,所以,當時,,當時,.因此,的取值范圍是.【點睛】本題考查橢圓兩切線垂直的證明,同時也考查了弦長的取值范圍的計算,考查計算能力,屬于中等題.18、見解析【解析】試題分析:把不等式的左邊寫成形式,利用柯西不等式即證.試題解析:證明:∵,又,∴考點:柯西不等式19、(1)見解析;(2)【解析】
分析:(1)先構造函數,再求導函數,根據導函數不大于零得函數單調遞減,最后根據單調性證得不等式;(2)研究零點,等價研究的零點,先求導數:,這里產生兩個討論點,一個是a與零,一個是x與2,當時,,沒有零點;當時,先減后增,從而確定只有一個零點的必要條件,再利用零點存在定理確定條件的充分性,即得a的值.詳解:(1)當時,等價于.設函數,則.當時,,所以在單調遞減.而,故當時,,即.(2)設函數.在只有一個零點當且僅當在只有一個零點.(i)當時,,沒有零點;(ii)當時,.當時,;當時,.所以在單調遞減,在單調遞增.故是在的最小值.①若,即,在沒有零點;②若,即,在只有一個零點;③若,即,由于,所以在有一個零點,由(1)知,當時,,所以.故在有一個零點,因此在有兩個零點.綜上,在只有一個零點時,.點睛:利用函數零點的情況求參數值或取值范圍的方法(1)利用零點存在的判定定理構建不等式求解.(2)分離參數后轉化為函數的值域(最值)問題求解.(3)轉化為兩熟悉的函數圖象的上、下關系問題,從而構建不等式求解.20、(1)見解析;(2)【解析】
(1)過點作交于,連接,設,連接,由角平分線的性質,正方形的性質,三角形的全等,證得,,由線面垂直的判斷定理證得平面,再由面面垂直的判斷得證.(2)平面幾何知識和線面的關系可證得平面,建立空間直角坐標系,求得兩個平面的法向量,根據二面角的向量計算公式可求得其值.【詳解】(1)如圖,過點作交于,連接,設,連接,,,又為的角平分線,四邊形為正方形,,又,,,,,又為的中點,又平面,,平面,又平面,平面平面,(2)在中,,,,在中,,,又,,,,又,,平面,平面,故建立如圖空間直角坐標系,則,,,,,,,設平面的一個法向量為,則,,令,得,設平面的一個法向量為,則,,令,得,由圖示可知二面角是銳角,故二面角的余弦值為.【點睛】本題考查空間的面面垂直關系的證明,二面角的計算,在證明垂直關系時,注意運用平面幾何中的等腰三角形的“三線合一”,勾股定理、菱形的對角線互相垂直,屬于基礎題.21、(1);(2)2【解析】
(1)首先利用對圓C的參數方程(φ為參數)進行消參數運算,化為普通方程,再根據普通方程化極坐標方程的公式得到圓C的極坐標方程.(2)設,聯立直線與圓的極坐標方程,解得;設,聯立直線與直線的極坐標方程,解得,可得.【詳解】(1)圓C的普通方程為,又,所以圓C的極坐標方程為.(2)設,則由解得,,得;設,則由解得,,得
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 二級MySQL數據清理與維護技巧試題及答案
- 二級MySQL數據結構與查詢試題及答案
- 四級軟件測試考試常見誤區試題及答案
- 提升測試文檔準確性的有效方法與技巧試題及答案
- 電氣行業法律法規解讀考核試卷
- 教學地圖繪制技術考核試卷
- 專注2025年軟件測試核心試題及答案
- 網絡技術考試的準備要點與建議試題及答案
- 數據庫查詢分析試題及答案解讀
- 網絡技術在項目中的應用試題及答案
- 《三毛流浪記》作者簡介張樂平
- 2023年山西建設投資集團有限公司招聘筆試題庫及答案解析
- 鐵皮石斛的抗氧化、保濕功效研究和應用現狀
- GB/Z 18620.4-2008圓柱齒輪檢驗實施規范第4部分:表面結構和輪齒接觸斑點的檢驗
- GB/T 97.1-2002平墊圈A級
- 泊 秦 淮唐 杜牧
- GB/T 1871.1-1995磷礦石和磷精礦中五氧化二磷含量的測定磷鉬酸喹啉重量法和容量法
- GB/T 1725-2007色漆、清漆和塑料不揮發物含量的測定
- 公路工程工作總結范文
- 初中物理杠桿滑輪課件
- 課件:第七章 社會工作項目結項(《社會工作項目策劃與評估》課程)
評論
0/150
提交評論