




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省宿遷市沭陽中學2025屆高三下學期聯考(二)數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.等比數列的前項和為,若,,,,則()A. B. C. D.2.直線與拋物線C:交于A,B兩點,直線,且l與C相切,切點為P,記的面積為S,則的最小值為A. B. C. D.3.若數列為等差數列,且滿足,為數列的前項和,則()A. B. C. D.4.要得到函數的圖象,只需將函數的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位5.已知集合,,則的真子集個數為()A.1個 B.2個 C.3個 D.4個6.若x∈(0,1),a=lnx,b=,c=elnx,則a,b,c的大小關系為()A.b>c>a B.c>b>a C.a>b>c D.b>a>c7.我國南北朝時的數學著作《張邱建算經》有一道題為:“今有十等人,每等一人,宮賜金以等次差降之,上三人先入,得金四斤,持出,下三人后入得金三斤,持出,中間四人未到者,亦依次更給,問各得金幾何?”則在該問題中,等級較高的二等人所得黃金比等級較低的九等人所得黃金()A.多1斤 B.少1斤 C.多斤 D.少斤8.設為自然對數的底數,函數,若,則()A. B. C. D.9.執行如圖所示的程序框圖,輸出的結果為()A. B.4 C. D.10.若滿足約束條件則的最大值為()A.10 B.8 C.5 D.311.中,點在邊上,平分,若,,,,則()A. B. C. D.12.已知,,,則,,的大小關系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列{an}的前n項和為Sn,向量(4,﹣n),(Sn,n+3).若⊥,則數列{}前2020項和為_____14.已知向量,,若,則______.15.正方體的棱長為2,是它的內切球的一條弦(我們把球面上任意兩點之間的線段稱為球的弦),為正方體表面上的動點,當弦的長度最大時,的取值范圍是______.16.“石頭、剪子、布”是大家熟悉的二人游戲,其規則是:在石頭、剪子和布中,二人各隨機選出一種,若相同則平局;若不同,則石頭克剪子,剪子克布,布克石頭.甲、乙兩人玩一次該游戲,則甲不輸的概率是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知,函數.(1)若函數在上為減函數,求實數的取值范圍;(2)求證:對上的任意兩個實數,,總有成立.18.(12分)如圖,在斜三棱柱中,側面與側面都是菱形,,.(Ⅰ)求證:;(Ⅱ)若,求平面與平面所成的銳二面角的余弦值.19.(12分)已知函數.(1)討論函數f(x)的極值點的個數;(2)若f(x)有兩個極值點證明.20.(12分)如圖所示,在三棱錐中,,,,點為中點.(1)求證:平面平面;(2)若點為中點,求平面與平面所成銳二面角的余弦值.21.(12分)如圖,平面四邊形中,,是上的一點,是的中點,以為折痕把折起,使點到達點的位置,且.(1)證明:平面平面;(2)求直線與平面所成角的正弦值.22.(10分)已知函數.(1)討論的零點個數;(2)證明:當時,.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】試題分析:由于在等比數列中,由可得:,又因為,所以有:是方程的二實根,又,,所以,故解得:,從而公比;那么,故選D.考點:等比數列.2、D【解析】
設出坐標,聯立直線方程與拋物線方程,利用弦長公式求得,再由點到直線的距離公式求得到的距離,得到的面積為,作差后利用導數求最值.【詳解】設,,聯立,得則,則由,得設,則,則點到直線的距離從而.令當時,;當時,故,即的最小值為本題正確選項:【點睛】本題考查直線與拋物線位置關系的應用,考查利用導數求最值的問題.解決圓錐曲線中的面積類最值問題,通常采用構造函數關系的方式,然后結合導數或者利用函數值域的方法來求解最值.3、B【解析】
利用等差數列性質,若,則求出,再利用等差數列前項和公式得【詳解】解:因為,由等差數列性質,若,則得,.為數列的前項和,則.故選:.【點睛】本題考查等差數列性質與等差數列前項和.(1)如果為等差數列,若,則.(2)要注意等差數列前項和公式的靈活應用,如.4、D【解析】
直接根據三角函數的圖象平移規則得出正確的結論即可;【詳解】解:函數,要得到函數的圖象,只需將函數的圖象向左平移個單位.故選:D.【點睛】本題考查三角函數圖象平移的應用問題,屬于基礎題.5、C【解析】
求出的元素,再確定其真子集個數.【詳解】由,解得或,∴中有兩個元素,因此它的真子集有3個.故選:C.【點睛】本題考查集合的子集個數問題,解題時可先確定交集中集合的元素個數,解題關鍵是對集合元素的認識,本題中集合都是曲線上的點集.6、A【解析】
利用指數函數、對數函數的單調性直接求解.【詳解】∵x∈(0,1),∴a=lnx<0,b=()lnx>()0=1,0<c=elnx<e0=1,∴a,b,c的大小關系為b>c>a.故選:A.【點睛】本題考查三個數的大小的判斷,考查指數函數、對數函數的單調性等基礎知識,考查運算求解能力,是基礎題.7、C【解析】設這十等人所得黃金的重量從大到小依次組成等差數列則由等差數列的性質得,故選C8、D【解析】
利用與的關系,求得的值.【詳解】依題意,所以故選:D【點睛】本小題主要考查函數值的計算,屬于基礎題.9、A【解析】
模擬執行程序框圖,依次寫出每次循環得到的的值,當,,退出循環,輸出結果.【詳解】程序運行過程如下:,;,;,;,;,;,;,,退出循環,輸出結果為,故選:A.【點睛】該題考查的是有關程序框圖的問題,涉及到的知識點有判斷程序框圖輸出結果,屬于基礎題目.10、D【解析】
畫出可行域,將化為,通過平移即可判斷出最優解,代入到目標函數,即可求出最值.【詳解】解:由約束條件作出可行域如圖,化目標函數為直線方程的斜截式,.由圖可知當直線過時,直線在軸上的截距最大,有最大值為3.故選:D.【點睛】本題考查了線性規劃問題.一般第一步畫出可行域,然后將目標函數轉化為的形式,在可行域內通過平移找到最優解,將最優解帶回到目標函數即可求出最值.注意畫可行域時,邊界線的虛實問題.11、B【解析】
由平分,根據三角形內角平分線定理可得,再根據平面向量的加減法運算即得答案.【詳解】平分,根據三角形內角平分線定理可得,又,,,,..故選:.【點睛】本題主要考查平面向量的線性運算,屬于基礎題.12、D【解析】
構造函數,利用導數求得的單調區間,由此判斷出的大小關系.【詳解】依題意,得,,.令,所以.所以函數在上單調遞增,在上單調遞減.所以,且,即,所以.故選:D.【點睛】本小題主要考查利用導數求函數的單調區間,考查化歸與轉化的數學思想方法,考查對數式比較大小,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由已知可得?4Sn﹣n(n+3)=0,可得Sn,n=1時,a1=S1=1.當n≥2時,an=Sn﹣Sn﹣1.可得:2().利用裂項求和方法即可得出.【詳解】∵⊥,∴?4Sn﹣n(n+3)=0,∴Sn,n=1時,a1=S1=1.當n≥2時,an=Sn﹣Sn﹣1.,滿足上式,.∴2().∴數列{}前2020項和為2(1)=2(1).故答案為:.【點睛】本題考查了向量垂直與數量積的關系、數列遞推關系、裂項求和方法,考查了推理能力與計算能力,屬于中檔題.14、1【解析】
根據向量加法和減法的坐標運算,先分別求得與,再結合向量的模長公式即可求得的值.【詳解】向量,則,則因為即,化簡可得解得故答案為:【點睛】本題考查了向量坐標加法和減法的運算,向量模長的求法,屬于基礎題.15、【解析】
由弦的長度最大可知為球的直徑.由向量的線性運用表示出,即可由范圍求得的取值范圍.【詳解】連接,如下圖所示:設球心為,則當弦的長度最大時,為球的直徑,由向量線性運算可知正方體的棱長為2,則球的半徑為1,,所以,而所以,即故答案為:.【點睛】本題考查了空間向量線性運算與數量積的運算,正方體內切球性質應用,屬于中檔題.16、【解析】
用樹狀圖法列舉出所有情況,得出甲不輸的結果數,再計算即得.【詳解】由題得,甲、乙兩人玩一次該游戲,共有9種情況,其中甲不輸有6種可能,故概率為.故答案為:【點睛】本題考查隨機事件的概率,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)見解析【解析】
(1)求出函數的導函數,依題意可得在上恒成立,參變分離得在上恒成立.設,求出即可得到參數的取值范圍;(2)不妨設,,,利用導數說明函數在上是減函數,即可得證;【詳解】解:(1)∵∴,且函數在上為減函數,即在上恒成立,∴在上恒成立.設,∵函數在上單調遞增,∴,∴,∴實數的取值范圍為.(2)不妨設,,,則,∴.∵,∴,又,令,∴,∴在上為減函數,∴,∴,即,∴在上是減函數,∴,即,∴,∴當時,.∵,∴.【點睛】本題考查了利用導數研究函數的單調性、極值與最值,利用導數證明不等式,考查了推理能力與計算能力,屬于難題.18、(Ⅰ)見解析;(Ⅱ).【解析】試題分析:(1)取中點,連,,由等邊三角形三邊合一可知,,即證.(2)以,,為正方向建立空間直角坐標系,由向量法可求得平面與平面所成的銳二面角的余弦值.試題解析:(Ⅰ)證明:連,,則和皆為正三角形.取中點,連,,則,,則平面,則(Ⅱ)由(Ⅰ)知,,又,所以.如圖所示,分別以,,為正方向建立空間直角坐標系,則,,,設平面的法向量為,因為,,所以取面的法向量取,則,平面與平面所成的銳二面角的余弦值.19、(1)見解析(2)見解析【解析】
(1)求得函數的定義域和導函數,對分成三種情況進行分類討論,判斷出的極值點個數.(2)由(1)知,結合韋達定理求得的關系式,由此化簡的表達式為,通過構造函數法,結合導數證得,由此證得成立.【詳解】(1)函數的定義域為得,(i)當時;,因為時,時,,所以是函數的一個極小值點;(ii)若時,若,即時,,在是減函數,無極值點.若,即時,有兩根,不妨設當和時,,當時,,是函數的兩個極值點,綜上所述時,僅有一個極值點;時,無極值點;時,有兩個極值點.(2)由(1)知,當且僅當時,有極小值點和極大值點,且是方程的兩根,,則所以設,則,又,即,所以所以是上的單調減函數,有兩個極值點,則【點睛】本小題主要考查利用導數研究函數的極值點,考查利用導數證明不等式,考查分類討論的數學思想方法,考查化歸與轉化的數學思想方法,屬于中檔題.20、(1)答案見解析.(2)【解析】
(1)通過證明平面,證得,證得,由此證得平面,進而證得平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出平面與平面所成銳二面角的余弦值.【詳解】(1)因為,所以平面,因為平面,所以.因為,點為中點,所以.因為,所以平面.因為平面,所以平面平面.(2)以點為坐標原點,直線分別為軸,軸,過點與平面垂直的直線為軸,建立空間直角坐標系,則,,,,,,,,,,設平面的一個法向量,則即取,則,,所以,設平面的一個法向量,則即取,則,,所以,設平面與平面所成銳二面角為,則.所以平面與平面所成銳二面角的余弦值為.【點睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.21、(1)見解析;(2)【解析】
(1)要證平面平面,只需證平面,而,所以只需證,而由已知的數據可證得為等邊三角形,又由于是的中點,所以,從而可證得結論;(2)由于在中,,而平面平面,所以點在平面的投影恰好為的中點,所以如圖建立空間直角坐標系,利用空間向量求解.【詳解】(1)由,所以平面四邊形為直角梯形,設,因為.所以在中,,則,又,所以,由,所以為等邊三角形,又是的中點,所以,又平面,則有平面,而平面,故平面平面.(2)解法一:在中,,取中點,所以,由(1)可知平面平面,平面平面,所以平面,以為坐標原點,方向為軸方向,建立如圖所示的空間直角坐標系,則,,設平面的法向量,由得取,則設直線與平面所成角大小為,則,故直線與平面所成角的正弦值為.解法二:在中,,取中點,所以,由(1)可知平面平面,平面平面,所以平面,過作于,連,則由平面平面,所以,又,則平面,又平面所以,在中,,所以,設到平面的距離為,由,即,即,可得,設直線與平面所成角大小為,則.故直線與平面所成角的正弦值為.【點睛】此題考查的是立體幾何中的證明面面垂直和求線面角,考查學生的轉化思想和計算能力,屬于中檔題.22、(1)見解析(2)見解析【解析】
(1)求出,分別以當,,時,結合函數的單調性和最值判斷零點的
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 雇傭汽車司機協議書
- 退出公司股份協議書
- 足球培訓合同協議書
- 餐飲外帶打包協議書
- 書畫院分院合作協議書
- 便利店勞動合同協議書
- 青島養老產業協議書
- 裝修公司和解協議書
- 充電樁租賃合同協議書
- 蘇北計劃資助協議書
- 環保管家服務投標方案(技術標)
- 樁頂地系梁專項施工方案
- 電氣工程概論-肖登明
- 民間個人借款還清證明范本
- 膠粘劑制造業行業營銷方案
- 【江淮汽車公司財務現狀及其盈利能力問題分析(10000字論文)】
- Sibelius使用教程教材說明
- 柔力球-華中師范大學中國大學mooc課后章節答案期末考試題庫2023年
- 學會寬容快樂生活主題班會課件
- ASME-B31.3-2008-工藝管道壁厚計算
- (完整版)培訓學校衛生管理制度
評論
0/150
提交評論