




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報(bào)或認(rèn)領(lǐng)
文檔簡介
云南省永德縣第一中學(xué)2025屆高三下學(xué)期五調(diào)考試數(shù)學(xué)試題注意事項(xiàng):1.答卷前,考生務(wù)必將自己的姓名、準(zhǔn)考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應(yīng)位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應(yīng)題目選項(xiàng)的答案信息點(diǎn)涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區(qū)域內(nèi)相應(yīng)位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準(zhǔn)使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1.已知函數(shù)是上的偶函數(shù),且當(dāng)時,函數(shù)是單調(diào)遞減函數(shù),則,,的大小關(guān)系是()A. B.C. D.2.已知等差數(shù)列的公差為-2,前項(xiàng)和為,若,,為某三角形的三邊長,且該三角形有一個內(nèi)角為,則的最大值為()A.5 B.11 C.20 D.253.對某兩名高三學(xué)生在連續(xù)9次數(shù)學(xué)測試中的成績(單位:分)進(jìn)行統(tǒng)計(jì)得到折線圖,下面是關(guān)于這兩位同學(xué)的數(shù)學(xué)成績分析.①甲同學(xué)的成績折線圖具有較好的對稱性,故平均成績?yōu)?30分;②根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),估計(jì)該同學(xué)平均成績在區(qū)間110,120內(nèi);③乙同學(xué)的數(shù)學(xué)成績與測試次號具有比較明顯的線性相關(guān)性,且為正相關(guān);④乙同學(xué)連續(xù)九次測驗(yàn)成績每一次均有明顯進(jìn)步.其中正確的個數(shù)為()A.4 B.3 C.2 D.14.若函數(shù)(其中,圖象的一個對稱中心為,,其相鄰一條對稱軸方程為,該對稱軸處所對應(yīng)的函數(shù)值為,為了得到的圖象,則只要將的圖象()A.向右平移個單位長度 B.向左平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度5.某幾何體的三視圖如圖所示,圖中圓的半徑為1,等腰三角形的腰長為3,則該幾何體表面積為()A. B. C. D.6.在中,為邊上的中線,為的中點(diǎn),且,,則()A. B. C. D.7.已知盒中有3個紅球,3個黃球,3個白球,且每種顏色的三個球均按,,編號,現(xiàn)從中摸出3個球(除顏色與編號外球沒有區(qū)別),則恰好不同時包含字母,,的概率為()A. B. C. D.8.一個正三角形的三個頂點(diǎn)都在雙曲線的右支上,且其中一個頂點(diǎn)在雙曲線的右頂點(diǎn),則實(shí)數(shù)的取值范圍是()A. B. C. D.9.已知是圓心為坐標(biāo)原點(diǎn),半徑為1的圓上的任意一點(diǎn),將射線繞點(diǎn)逆時針旋轉(zhuǎn)到交圓于點(diǎn),則的最大值為()A.3 B.2 C. D.10.已知復(fù)數(shù),其中為虛數(shù)單位,則()A. B. C.2 D.11.將一張邊長為的紙片按如圖(1)所示陰影部分裁去四個全等的等腰三角形,將余下部分沿虛線折疊并拼成一個有底的正四棱錐模型,如圖(2)放置,如果正四棱錐的主視圖是正三角形,如圖(3)所示,則正四棱錐的體積是()A. B. C. D.12.已知實(shí)數(shù),,函數(shù)在上單調(diào)遞增,則實(shí)數(shù)的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.根據(jù)如圖所示的偽代碼,若輸出的的值為,則輸入的的值為_______.14.已知雙曲線:(,),直線:與雙曲線的兩條漸近線分別交于,兩點(diǎn).若(點(diǎn)為坐標(biāo)原點(diǎn))的面積為32,且雙曲線的焦距為,則雙曲線的離心率為________.15.某種賭博每局的規(guī)則是:賭客先在標(biāo)記有1,2,3,4,5的卡片中隨機(jī)摸取一張,將卡片上的數(shù)字作為其賭金;隨后放回該卡片,再隨機(jī)摸取兩張,將這兩張卡片上數(shù)字之差的絕對值的1.4倍作為其獎金.若隨機(jī)變量ξ1和ξ2分別表示賭客在一局賭博中的賭金和獎金,則D(ξ1)=_____,E(ξ1)﹣E(ξ2)=_____.16.函數(shù)與的圖象上存在關(guān)于軸的對稱點(diǎn),則實(shí)數(shù)的取值范圍為______.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知數(shù)列的前項(xiàng)和為,且滿足().(1)求數(shù)列的通項(xiàng)公式;(2)設(shè)(),數(shù)列的前項(xiàng)和.若對恒成立,求實(shí)數(shù),的值.18.(12分)已知橢圓:的左、右焦點(diǎn)分別為,,焦距為2,且經(jīng)過點(diǎn),斜率為的直線經(jīng)過點(diǎn),與橢圓交于,兩點(diǎn).(1)求橢圓的方程;(2)在軸上是否存在點(diǎn),使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,如果不存在,請說明理由.19.(12分)過點(diǎn)P(-4,0)的動直線l與拋物線相交于D、E兩點(diǎn),已知當(dāng)l的斜率為時,.(1)求拋物線C的方程;(2)設(shè)的中垂線在軸上的截距為,求的取值范圍.20.(12分)[選修4-4:極坐標(biāo)與參數(shù)方程]在直角坐標(biāo)系中,曲線的參數(shù)方程為(是參數(shù)),以坐標(biāo)原點(diǎn)為極點(diǎn),軸的正半軸為極軸建立極坐標(biāo)系,曲線的極坐標(biāo)方程為.(1)求曲線的極坐標(biāo)方程和曲線的直角坐標(biāo)方程;(2)若射線與曲線交于,兩點(diǎn),與曲線交于,兩點(diǎn),求取最大值時的值21.(12分)已知函數(shù),(1)若,求的單調(diào)區(qū)間和極值;(2)設(shè),且有兩個極值點(diǎn),,若,求的最小值.22.(10分)秉持“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念,為推動新能源汽車產(chǎn)業(yè)迅速發(fā)展,有必要調(diào)查研究新能源汽車市場的生產(chǎn)與銷售.下圖是我國某地區(qū)年至年新能源汽車的銷量(單位:萬臺)按季度(一年四個季度)統(tǒng)計(jì)制成的頻率分布直方圖.(1)求直方圖中的值,并估計(jì)銷量的中位數(shù);(2)請根據(jù)頻率分布直方圖估計(jì)新能源汽車平均每個季度的銷售量(同一組數(shù)據(jù)用該組中間值代表),并以此預(yù)計(jì)年的銷售量.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項(xiàng)中,只有一項(xiàng)是符合題目要求的。1、D【解析】
利用對數(shù)函數(shù)的單調(diào)性可得,再根據(jù)的單調(diào)性和奇偶性可得正確的選項(xiàng).【詳解】因?yàn)椋?又,故.因?yàn)楫?dāng)時,函數(shù)是單調(diào)遞減函數(shù),所以.因?yàn)闉榕己瘮?shù),故,所以.故選:D.【點(diǎn)睛】本題考查抽象函數(shù)的奇偶性、單調(diào)性以及對數(shù)函數(shù)的單調(diào)性在大小比較中的應(yīng)用,比較大小時注意選擇合適的中間數(shù)來傳遞不等關(guān)系,本題屬于中檔題.2、D【解析】
由公差d=-2可知數(shù)列單調(diào)遞減,再由余弦定理結(jié)合通項(xiàng)可求得首項(xiàng),即可求出前n項(xiàng)和,從而得到最值.【詳解】等差數(shù)列的公差為-2,可知數(shù)列單調(diào)遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內(nèi)角為,由余弦定理得,設(shè)首項(xiàng)為,即得,所以或,又即,舍去,,d=-2前項(xiàng)和.故的最大值為.故選:D【點(diǎn)睛】本題考查等差數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式的應(yīng)用,考查求前n項(xiàng)和的最值問題,同時還考查了余弦定理的應(yīng)用.3、C【解析】
利用圖形,判斷折線圖平均分以及線性相關(guān)性,成績的比較,說明正誤即可.【詳解】①甲同學(xué)的成績折線圖具有較好的對稱性,最高130分,平均成績?yōu)榈陀?30分,①錯誤;②根據(jù)甲同學(xué)成績折線圖提供的數(shù)據(jù)進(jìn)行統(tǒng)計(jì),估計(jì)該同學(xué)平均成績在區(qū)間[110,120]內(nèi),②正確;③乙同學(xué)的數(shù)學(xué)成績與測試次號具有比較明顯的線性相關(guān)性,且為正相關(guān),③正確;④乙同學(xué)在這連續(xù)九次測驗(yàn)中第四次、第七次成績較上一次成績有退步,故④不正確.故選:C.【點(diǎn)睛】本題考查折線圖的應(yīng)用,線性相關(guān)以及平均分的求解,考查轉(zhuǎn)化思想以及計(jì)算能力,屬于基礎(chǔ)題.4、B【解析】
由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出,由五點(diǎn)法作圖求出的值,可得的解析式,再根據(jù)函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式,得出結(jié)論.【詳解】根據(jù)已知函數(shù)其中,的圖象過點(diǎn),,可得,,解得:.再根據(jù)五點(diǎn)法作圖可得,可得:,可得函數(shù)解析式為:故把的圖象向左平移個單位長度,可得的圖象,故選B.【點(diǎn)睛】本題主要考查由函數(shù)的部分圖象求解析式,由函數(shù)的圖象的頂點(diǎn)坐標(biāo)求出A,由周期求出,由五點(diǎn)法作圖求出的值,函數(shù)的圖象變換規(guī)律,誘導(dǎo)公式的應(yīng)用,屬于中檔題.5、C【解析】
幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,計(jì)算得到答案.【詳解】幾何體是由一個圓錐和半球組成,其中半球的半徑為1,圓錐的母線長為3,底面半徑為1,故幾何體的表面積為.故選:.【點(diǎn)睛】本題考查了根據(jù)三視圖求表面積,意在考查學(xué)生的計(jì)算能力和空間想象能力.6、A【解析】
根據(jù)向量的線性運(yùn)算可得,利用及,計(jì)算即可.【詳解】因?yàn)?所以,所以,故選:A【點(diǎn)睛】本題主要考查了向量的線性運(yùn)算,向量數(shù)量積的運(yùn)算,向量數(shù)量積的性質(zhì),屬于中檔題.7、B【解析】
首先求出基本事件總數(shù),則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”,記事件“恰好不同時包含字母,,”為,利用對立事件的概率公式計(jì)算可得;【詳解】解:從9個球中摸出3個球,則基本事件總數(shù)為(個),則事件“恰好不同時包含字母,,”的對立事件為“取出的3個球的編號恰好為字母,,”記事件“恰好不同時包含字母,,”為,則.故選:B【點(diǎn)睛】本題考查了古典概型及其概率計(jì)算公式,考查了排列組合的知識,解答的關(guān)鍵在于正確理解題意,屬于基礎(chǔ)題.8、D【解析】
因?yàn)殡p曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點(diǎn)坐標(biāo)為,,將其代入雙曲線可解得.【詳解】因?yàn)殡p曲線分左右支,所以,根據(jù)雙曲線和正三角形的對稱性可知:第一象限的頂點(diǎn)坐標(biāo)為,,將其代入雙曲線方程得:,即,由得.故選:.【點(diǎn)睛】本題考查了雙曲線的性質(zhì),意在考查學(xué)生對這些知識的理解掌握水平.9、C【解析】
設(shè)射線OA與x軸正向所成的角為,由三角函數(shù)的定義得,,,利用輔助角公式計(jì)算即可.【詳解】設(shè)射線OA與x軸正向所成的角為,由已知,,,所以,當(dāng)時,取得等號.故選:C.【點(diǎn)睛】本題考查正弦型函數(shù)的最值問題,涉及到三角函數(shù)的定義、輔助角公式等知識,是一道容易題.10、D【解析】
把已知等式變形,然后利用數(shù)代數(shù)形式的乘除運(yùn)算化簡,再由復(fù)數(shù)模的公式計(jì)算得答案.【詳解】解:,則.故選:D.【點(diǎn)睛】本題考查了復(fù)數(shù)代數(shù)形式的乘除運(yùn)算,考查了復(fù)數(shù)模的求法,是基礎(chǔ)題.11、B【解析】設(shè)折成的四棱錐的底面邊長為,高為,則,故由題設(shè)可得,所以四棱錐的體積,應(yīng)選答案B.12、D【解析】
根據(jù)題意,對于函數(shù)分2段分析:當(dāng),由指數(shù)函數(shù)的性質(zhì)分析可得①,當(dāng),由導(dǎo)數(shù)與函數(shù)單調(diào)性的關(guān)系可得,在上恒成立,變形可得②,再結(jié)合函數(shù)的單調(diào)性,分析可得③,聯(lián)立三個式子,分析可得答案.【詳解】解:根據(jù)題意,函數(shù)在上單調(diào)遞增,
當(dāng),若為增函數(shù),則①,
當(dāng),若為增函數(shù),必有在上恒成立,
變形可得:,
又由,可得在上單調(diào)遞減,則,
若在上恒成立,則有②,
若函數(shù)在上單調(diào)遞增,左邊一段函數(shù)的最大值不能大于右邊一段函數(shù)的最小值,則需有,③
聯(lián)立①②③可得:.
故選:D.【點(diǎn)睛】本題考查函數(shù)單調(diào)性的性質(zhì)以及應(yīng)用,注意分段函數(shù)單調(diào)性的性質(zhì).二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
算法的功能是求的值,根據(jù)輸出的值,分別求出當(dāng)時和當(dāng)時的值即可得解.【詳解】解:由程序語句知:算法的功能是求的值,當(dāng)時,,可得:,或(舍去);當(dāng)時,,可得:(舍去).綜上的值為:.故答案為:.【點(diǎn)睛】本題考查了選擇結(jié)構(gòu)的程序語句,根據(jù)語句判斷算法的功能是解題的關(guān)鍵,屬于基礎(chǔ)題.14、或【解析】
用表示出的面積,求得等量關(guān)系,聯(lián)立焦距的大小,以及,即可容易求得,則離心率得解.【詳解】聯(lián)立解得.所以的面積,所以.而由雙曲線的焦距為知,,所以.聯(lián)立解得或故雙曲線的離心率為或.故答案為:或.【點(diǎn)睛】本題考查雙曲線的方程與性質(zhì),考查運(yùn)算求解能力以及函數(shù)與方程思想,屬中檔題.15、20.2【解析】
分別求出隨機(jī)變量ξ1和ξ2的分布列,根據(jù)期望和方差公式計(jì)算得解.【詳解】設(shè)a,b∈{1,2,1,4,5},則p(ξ1=a),其ξ1分布列為:ξ112145PE(ξ1)(1+2+1+4+5)=1.D(ξ1)[(1﹣1)2+(2﹣1)2+(1﹣1)2+(4﹣1)2+(5﹣1)2]=2.ξ2=1.4|a﹣b|的可能取值分別為:1.4,2.3,4.2,5.6,P(ξ2=1.4),P(ξ2=2.3),P(ξ2=4.2),P(ξ2=5.6),可得分布列.ξ21.42.34.25.6PE(ξ2)=1.42.34.25.62.3.∴E(ξ1)﹣E(ξ2)=0.2.故答案為:2,0.2.【點(diǎn)睛】此題考查隨機(jī)變量及其分布,關(guān)鍵在于準(zhǔn)確求出隨機(jī)變量取值的概率,根據(jù)公式準(zhǔn)確計(jì)算期望和方差.16、【解析】
先求得與關(guān)于軸對稱的函數(shù),將問題轉(zhuǎn)化為與的圖象有交點(diǎn),即方程有解.對分成三種情況進(jìn)行分類討論,由此求得實(shí)數(shù)的取值范圍.【詳解】因?yàn)殛P(guān)于軸對稱的函數(shù)為,因?yàn)楹瘮?shù)與的圖象上存在關(guān)于軸的對稱點(diǎn),所以與的圖象有交點(diǎn),方程有解.時符合題意.時轉(zhuǎn)化為有解,即,的圖象有交點(diǎn),是過定點(diǎn)的直線,其斜率為,若,則函數(shù)與的圖象必有交點(diǎn),滿足題意;若,設(shè),相切時,切點(diǎn)的坐標(biāo)為,則,解得,切線斜率為,由圖可知,當(dāng),即時,,的圖象有交點(diǎn),此時,與的圖象有交點(diǎn),函數(shù)與的圖象上存在關(guān)于軸的對稱點(diǎn),綜上可得,實(shí)數(shù)的取值范圍為.故答案為:【點(diǎn)睛】本小題主要考查利用導(dǎo)數(shù)求解函數(shù)的零點(diǎn)以及對稱性,函數(shù)與方程等基礎(chǔ)知識,考查學(xué)生分析問題,解決問題的能力,推理與運(yùn)算求解能力,轉(zhuǎn)化與化歸思想和應(yīng)用意識.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17、(1)(2),.【解析】
(1)根據(jù)數(shù)列的通項(xiàng)與前n項(xiàng)和的關(guān)系式,即求解數(shù)列的通項(xiàng)公式;(2)由(1)可得,利用等比數(shù)列的前n項(xiàng)和公式和裂項(xiàng)法,求得,結(jié)合題意,即可求解.【詳解】(1)由題意,當(dāng)時,由,解得;當(dāng)時,可得,即,顯然當(dāng)時上式也適合,所以數(shù)列的通項(xiàng)公式為.(2)由(1)可得,所以.因?yàn)閷愠闪ⅲ裕?【點(diǎn)睛】本題主要考查了數(shù)列的通項(xiàng)公式的求解,等差數(shù)列的前n項(xiàng)和公式,以及裂項(xiàng)法求和的應(yīng)用,其中解答中熟記等差、等比數(shù)列的通項(xiàng)公式和前n項(xiàng)和公式,以及合理利用“裂項(xiàng)法”求和是解答的關(guān)鍵,著重考查了推理與運(yùn)算能力,屬于中檔試題.18、(1)(2)存在;實(shí)數(shù)的取值范圍是【解析】
(1)根據(jù)橢圓定義計(jì)算,再根據(jù),,的關(guān)系計(jì)算即可得出橢圓方程;(2)設(shè)直線方程為,與橢圓方程聯(lián)立方程組,求出的范圍,根據(jù)根與系數(shù)的關(guān)系求出的中點(diǎn)坐標(biāo),求出的中垂線與軸的交點(diǎn)橫,得出關(guān)于的函數(shù),利用基本不等式得出的范圍.【詳解】(1)由題意可知,,.又,,,橢圓的方程為:.(2)若存在點(diǎn),使得以,為鄰邊的平行四邊形是菱形,則為線段的中垂線與軸的交點(diǎn).設(shè)直線的方程為:,,,,,聯(lián)立方程組,消元得:,△,又,故.由根與系數(shù)的關(guān)系可得,設(shè)的中點(diǎn)為,,則,,線段的中垂線方程為:,令可得,即.,故,當(dāng)且僅當(dāng)即時取等號,,且.的取值范圍是,.【點(diǎn)睛】本題主要考查了橢圓的性質(zhì),考查直線與橢圓的位置關(guān)系,意在考查學(xué)生對這些知識的理解掌握水平和分析推理能力.19、;【解析】
根據(jù)題意,求出直線方程并與拋物線方程聯(lián)立,利用韋達(dá)定理,結(jié)合,即可求出拋物線C的方程;設(shè),的中點(diǎn)為,把直線l方程與拋物線方程聯(lián)立,利用判別式求出的取值范圍,利用韋達(dá)定理求出,進(jìn)而求出的中垂線方程,即可求得在軸上的截距的表達(dá)式,然后根據(jù)的取值范圍求解即可.【詳解】由題意可知,直線l的方程為,與拋物線方程方程聯(lián)立可得,,設(shè),由韋達(dá)定理可得,,因?yàn)?,所以,解得,所以拋物線C的方程為;設(shè),的中點(diǎn)為,由,消去可得,所以判別式,解得或,由韋達(dá)定理可得,,所以的中垂線方程為,令則,因?yàn)榛?所以即為所求.【點(diǎn)睛】本題考查拋物線的標(biāo)準(zhǔn)方程和直線與拋物線的位置關(guān)系,考查向量知識的運(yùn)用;考查學(xué)生分析問題、解決問題的能力和運(yùn)算求解能力;屬于中檔題.20、(1)的極坐標(biāo)方程為.曲線的直角坐標(biāo)方程為.(2)【解析】
(1)先得到的一般方程,再由極坐標(biāo)化直角坐標(biāo)的公式得到一般方程,將代入得,得到曲線的直角坐標(biāo)方程;(2)設(shè)點(diǎn)、的極坐標(biāo)分別為,,將分別代入曲線、極坐標(biāo)方程得:,,,之后進(jìn)行化一,可得到最值,此時,可求解.【詳解】(1)由得,將代入得:,故曲線的極坐標(biāo)方程為.由得,將代入得,故曲線的直角坐標(biāo)方程為.(2)設(shè)點(diǎn)、的極坐標(biāo)分別為,,將分別代入曲線、極坐標(biāo)方程得:,,則,其中為銳角,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
- 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CSMT-YB 004-2023燃?xì)鉁u輪流量計(jì)維護(hù)和維修技術(shù)規(guī)范
- T/CSIQ 3002-2015藝術(shù)品鑒證質(zhì)量溯源驗(yàn)證規(guī)程陶瓷類
- T/CQAP 3001-2020濕熱滅菌無菌產(chǎn)品參數(shù)放行要求
- T/CNFMA B003-2018林火防撲機(jī)械以汽油機(jī)為動力的便攜式化學(xué)泡沫滅火機(jī)
- T/CNFAGS 1-2021煤制合成氨、尿素行業(yè)清潔生產(chǎn)水平分級標(biāo)準(zhǔn)(大氣污染物)
- T/CNAEC 0203-2023液化天然氣接收站工程項(xiàng)目可行性研究報(bào)告編制指南
- T/CMA-RQ 119-2023燃?xì)獗碛秒姍C(jī)控制閥
- T/CIQA 46-2022紅花種植與采集技術(shù)規(guī)范
- T/CIE 150-2022現(xiàn)場可編程門陣列(FPGA)芯片時序可靠性測試規(guī)范
- T/CIE 132-2022磁控濺射設(shè)備薄膜精度測試方法
- 智慧礦山行業(yè)洞察研究報(bào)告 2023
- 《體態(tài)與健康》課件
- 《國有企業(yè)采購操作規(guī)范》【2023修訂版】
- 熱水供水系統(tǒng)運(yùn)營維護(hù)服務(wù)投標(biāo)方案(技術(shù)標(biāo))
- 軸承安裝施工方案
- 職業(yè)生涯規(guī)劃與求職就業(yè)指導(dǎo)智慧樹知到課后章節(jié)答案2023年下中南大學(xué)
- 封頭下料尺寸表新
- 在線教育學(xué)習(xí)平臺的設(shè)計(jì)與實(shí)現(xiàn)
- 辯論賽PPT模板模板
- 五年級道德與法治下冊 (富起來到強(qiáng)起來)百年追夢 復(fù)興中華教學(xué)課件
- 中醫(yī)適宜技術(shù)操作規(guī)程及評分標(biāo)準(zhǔn)
評論
0/150
提交評論