2025屆山東省棗莊市第十八中學高三新時代NT抗疫愛心卷(Ⅱ)數學試題_第1頁
2025屆山東省棗莊市第十八中學高三新時代NT抗疫愛心卷(Ⅱ)數學試題_第2頁
2025屆山東省棗莊市第十八中學高三新時代NT抗疫愛心卷(Ⅱ)數學試題_第3頁
2025屆山東省棗莊市第十八中學高三新時代NT抗疫愛心卷(Ⅱ)數學試題_第4頁
2025屆山東省棗莊市第十八中學高三新時代NT抗疫愛心卷(Ⅱ)數學試題_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆山東省棗莊市第十八中學高三新時代NT抗疫愛心卷(Ⅱ)數學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知一個三棱錐的三視圖如圖所示,其中三視圖的長、寬、高分別為,,,且,則此三棱錐外接球表面積的最小值為()A. B. C. D.2.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.3.命題:存在實數,對任意實數,使得恒成立;:,為奇函數,則下列命題是真命題的是()A. B. C. D.4.用一個平面去截正方體,則截面不可能是()A.正三角形 B.正方形 C.正五邊形 D.正六邊形5.的展開式中的系數是()A.160 B.240 C.280 D.3206.已知函數,則下列判斷錯誤的是()A.的最小正周期為 B.的值域為C.的圖象關于直線對稱 D.的圖象關于點對稱7.已知,若,則等于()A.3 B.4 C.5 D.68.函數在上的大致圖象是()A. B.C. D.9.泰山有“五岳之首”“天下第一山”之稱,登泰山的路線有四條:紅門盤道徒步線路,桃花峪登山線路,天外村汽車登山線路,天燭峰登山線路.甲、乙、丙三人在聊起自己登泰山的線路時,發現三人走的線路均不同,且均沒有走天外村汽車登山線路,三人向其他旅友進行如下陳述:甲:我走紅門盤道徒步線路,乙走桃花峪登山線路;乙:甲走桃花峪登山線路,丙走紅門盤道徒步線路;丙:甲走天燭峰登山線路,乙走紅門盤道徒步線路;事實上,甲、乙、丙三人的陳述都只對一半,根據以上信息,可判斷下面說法正確的是()A.甲走桃花峪登山線路 B.乙走紅門盤道徒步線路C.丙走桃花峪登山線路 D.甲走天燭峰登山線路10.某校在高一年級進行了數學競賽(總分100分),下表為高一·一班40名同學的數學競賽成績:555759616864625980889895607388748677799497100999789818060796082959093908580779968如圖的算法框圖中輸入的為上表中的學生的數學競賽成績,運行相應的程序,輸出,的值,則()A.6 B.8 C.10 D.1211.下列選項中,說法正確的是()A.“”的否定是“”B.若向量滿足,則與的夾角為鈍角C.若,則D.“”是“”的必要條件12.若,則“”的一個充分不必要條件是A. B.C.且 D.或二、填空題:本題共4小題,每小題5分,共20分。13.已知雙曲線的兩條漸近線方程為,若頂點到漸近線的距離為1,則雙曲線方程為.14.在中,角A,B,C的對邊分別為a,b,c,且,則________.15.若雙曲線C:(,)的頂點到漸近線的距離為,則的最小值________.16.若向量與向量垂直,則______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)底面為菱形的直四棱柱,被一平面截取后得到如圖所示的幾何體.若,.(1)求證:;(2)求二面角的正弦值.18.(12分)已知函數.(1)討論的零點個數;(2)證明:當時,.19.(12分)已知函數,.(1)若函數在上單調遞減,且函數在上單調遞增,求實數的值;(2)求證:(,且).20.(12分)在直角坐標系中,圓的參數方程為(為參數),以為極點,軸的非負半軸為極軸建立極坐標系.(1)求圓的極坐標方程;(2)直線的極坐標方程是,射線與圓的交點為、,與直線的交點為,求線段的長.21.(12分)△ABC的內角的對邊分別為,已知△ABC的面積為(1)求;(2)若求△ABC的周長.22.(10分)設函數.(Ⅰ)討論函數的單調性;(Ⅱ)若函數有兩個極值點,求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據三視圖得到幾何體為一三棱錐,并以該三棱錐構造長方體,于是得到三棱錐的外接球即為長方體的外接球,進而得到外接球的半徑,求得外接球的面積后可求出最小值.【詳解】由已知條件及三視圖得,此三棱錐的四個頂點位于長方體的四個頂點,即為三棱錐,且長方體的長、寬、高分別為,∴此三棱錐的外接球即為長方體的外接球,且球半徑為,∴三棱錐外接球表面積為,∴當且僅當,時,三棱錐外接球的表面積取得最小值為.故選B.【點睛】(1)解決關于外接球的問題的關鍵是抓住外接的特點,即球心到多面體的頂點的距離都等于球的半徑,同時要作一圓面起襯托作用.(2)長方體的外接球的直徑即為長方體的體對角線,對于一些比較特殊的三棱錐,在研究其外接球的問題時可考慮通過構造長方體,通過長方體的外球球來研究三棱錐的外接球的問題.2.B【解析】

由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.【點睛】本題考查了空間向量的應用,考查了空間想象能力,屬于基礎題.3.A【解析】

分別判斷命題和的真假性,然后根據含有邏輯聯結詞命題的真假性判斷出正確選項.【詳解】對于命題,由于,所以命題為真命題.對于命題,由于,由解得,且,所以是奇函數,故為真命題.所以為真命題.、、都是假命題.故選:A【點睛】本小題主要考查誘導公式,考查函數的奇偶性,考查含有邏輯聯結詞命題真假性的判斷,屬于基礎題.4.C【解析】試題分析:畫出截面圖形如圖顯然A正三角形,B正方形:D正六邊形,可以畫出五邊形但不是正五邊形;故選C.考點:平面的基本性質及推論.5.C【解析】

首先把看作為一個整體,進而利用二項展開式求得的系數,再求的展開式中的系數,二者相乘即可求解.【詳解】由二項展開式的通項公式可得的第項為,令,則,又的第為,令,則,所以的系數是.故選:C【點睛】本題考查二項展開式指定項的系數,掌握二項展開式的通項是解題的關鍵,屬于基礎題.6.D【解析】

先將函數化為,再由三角函數的性質,逐項判斷,即可得出結果.【詳解】可得對于A,的最小正周期為,故A正確;對于B,由,可得,故B正確;對于C,正弦函數對稱軸可得:解得:,當,,故C正確;對于D,正弦函數對稱中心的橫坐標為:解得:若圖象關于點對稱,則解得:,故D錯誤;故選:D.【點睛】本題考查三角恒等變換,三角函數的性質,熟記三角函數基本公式和基本性質,考查了分析能力和計算能力,屬于基礎題.7.C【解析】

先求出,再由,利用向量數量積等于0,從而求得.【詳解】由題可知,因為,所以有,得,故選:C.【點睛】該題考查的是有關向量的問題,涉及到的知識點有向量的減法坐標運算公式,向量垂直的坐標表示,屬于基礎題目.8.D【解析】

討論的取值范圍,然后對函數進行求導,利用導數的幾何意義即可判斷.【詳解】當時,,則,所以函數在上單調遞增,令,則,根據三角函數的性質,當時,,故切線的斜率變小,當時,,故切線的斜率變大,可排除A、B;當時,,則,所以函數在上單調遞增,令,,當時,,故切線的斜率變大,當時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數的圖像,考查了導數與函數單調性的關系以及導數的幾何意義,屬于中檔題.9.D【解析】

甲乙丙三人陳述中都提到了甲的路線,由題意知這三句中一定有一個是正確另外兩個錯誤的,再分情況討論即可.【詳解】若甲走的紅門盤道徒步線路,則乙,丙描述中的甲的去向均錯誤,又三人的陳述都只對一半,則乙丙的另外兩句話“丙走紅門盤道徒步線路”,“乙走紅門盤道徒步線路”正確,與“三人走的線路均不同”矛盾.故甲的另一句“乙走桃花峪登山線路”正確,故丙的“乙走紅門盤道徒步線路”錯誤,“甲走天燭峰登山線路”正確.乙的話中“甲走桃花峪登山線路”錯誤,“丙走紅門盤道徒步線路”正確.綜上所述,甲走天燭峰登山線路,乙走桃花峪登山線路,丙走紅門盤道徒步線路故選:D【點睛】本題主要考查了判斷與推理的問題,重點是找到三人中都提到的內容進行分類討論,屬于基礎題型.10.D【解析】

根據程序框圖判斷出的意義,由此求得的值,進而求得的值.【詳解】由題意可得的取值為成績大于等于90的人數,的取值為成績大于等于60且小于90的人數,故,,所以.故選:D【點睛】本小題考查利用程序框圖計算統計量等基礎知識;考查運算求解能力,邏輯推理能力和數學應用意識.11.D【解析】

對于A根據命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,即可判斷出;對于B若向量滿足,則與的夾角為鈍角或平角;對于C當m=0時,滿足am2≤bm2,但是a≤b不一定成立;對于D根據元素與集合的關系即可做出判斷.【詳解】選項A根據命題的否定可得:“?x0∈R,x02-x0≤0”的否定是“?x∈R,x2-x>0”,因此A不正確;選項B若向量滿足,則與的夾角為鈍角或平角,因此不正確.選項C當m=0時,滿足am2≤bm2,但是a≤b不一定成立,因此不正確;選項D若“”,則且,所以一定可以推出“”,因此“”是“”的必要條件,故正確.故選:D.【點睛】本題考查命題的真假判斷與應用,涉及知識點有含有量詞的命題的否定、不等式性質、向量夾角與性質、集合性質等,屬于簡單題.12.C【解析】,∴,當且僅當時取等號.故“且”是“”的充分不必要條件.選C.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】由已知,即,取雙曲線頂點及漸近線,則頂點到該漸近線的距離為,由題可知,所以,則所求雙曲線方程為.14.【解析】

利用正弦定理將邊化角,即可容易求得結果.【詳解】由正弦定理可知,,即.故答案為:.【點睛】本題考查利用正弦定理實現邊角互化,屬基礎題.15.【解析】

根據雙曲線的方程求出其中一條漸近線,頂點,再利用點到直線的距離公式可得,由,利用基本不等式即可求解.【詳解】由雙曲線C:(,,可得一條漸近線,一個頂點,所以,解得,則,當且僅當時,取等號,所以的最小值為.故答案為:【點睛】本題考查了雙曲線的幾何性質、點到直線的距離公式、基本不等式求最值,注意驗證等號成立的條件,屬于基礎題.16.0【解析】

直接根據向量垂直計算得到答案.【詳解】向量與向量垂直,則,故.故答案為:.【點睛】本題考查了根據向量垂直求參數,意在考查學生的計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)見解析;(2)【解析】

(1)先由線面垂直的判定定理證明平面,再證明線線垂直即可;(2)建立空間直角坐標系,求平面的一個法向量與平面的一個法向量,再利用向量數量積運算即可.【詳解】(1)證明:連接,由平行且相等,可知四邊形為平行四邊形,所以.由題意易知,,所以,,因為,所以平面,又平面,所以.(2)設,,由已知可得:平面平面,所以,同理可得:,所以四邊形為平行四邊形,所以為的中點,為的中點,所以平行且相等,從而平面,又,所以,,兩兩垂直,如圖,建立空間直角坐標系,,,由平面幾何知識,得.則,,,,所以,,.設平面的法向量為,由,可得,令,則,,所以.同理,平面的一個法向量為.設平面與平面所成角為,則,所以.【點睛】本題考查了線面垂直的判定定理及二面角的平面角的求法,重點考查了空間向量的應用,屬中檔題.18.(1)見解析(2)見解析【解析】

(1)求出,分別以當,,時,結合函數的單調性和最值判斷零點的個數.(2)令,結合導數求出;同理可求出滿足,從而可得,進而證明.【詳解】解析:(1),,當時,,單調遞減,,,此時有1個零點;當時,無零點;當時,由得,由得,∴在單調遞減,在單調遞增,∴在處取得最小值,若,則,此時沒有零點;若,則,此時有1個零點;若,則,,求導易得,此時在,上各有1個零點.綜上可得時,沒有零點,或時,有1個零點,時,有2個零點.(2)令,則,當時,;當時,,∴.令,則,當時,,當時,,∴,∴,,∴,即.【點睛】本題考查了導數判斷函數零點問題,考查了運用導數證明不等式問題,考查了分類的數學思想.本題的難點在于第二問不等式的證明中,合理設出函數,通過比較最值證明.19.(1)1;(2)見解析【解析】

(1)分別求得與的導函數,由導函數與單調性關系即可求得的值;(2)由(1)可知當時,,當時,,因而,構造,由對數運算及不等式放縮可證明,從而不等式可證明.【詳解】(1)∵函數在上單調遞減,∴,即在上恒成立,∴,又∵函數在上單調遞增,∴,即在上恒成立,,∴綜上可知,.(2)證明:由(1)知,當時,函數在上為減函數,在上為增函數,而,∴當時,,當時,.∴∴即,∴.【點睛】本題考查了導數與函數單調性關系,放縮法在證明不等式中的應用,屬于難題.20.(1)(2)【解析】

(1)首先將參數方程轉化為普通方程再根據公式化為極坐標方程即可;(2)設,,由,即可求出,則計算可得;【詳解】解:(1)圓的參數方程(為參數)可化為,∴,即圓的極坐標方程為.(2)設,由,解得.設,由,解得.∵,∴.【點睛】本題考查了利用極坐標方程求曲線的交點弦長,考查了推理能力與計算能力,屬于中檔題.21.(1)(2).【解析】試題分析:(1)由三角形面積公式建立等式,再利用正弦定理將邊化成角,從而得出的值;(2)由和計算出,從而求出角,根據題設和余弦定理可以求出和的值,從而求出的周長為.試題解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論