




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆新疆克拉瑪依市第十三中學高三下學期第三次月考(期中)數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.某工廠只生產口罩、抽紙和棉簽,如圖是該工廠年至年各產量的百分比堆積圖(例如:年該工廠口罩、抽紙、棉簽產量分別占、、),根據該圖,以下結論一定正確的是()A.年該工廠的棉簽產量最少B.這三年中每年抽紙的產量相差不明顯C.三年累計下來產量最多的是口罩D.口罩的產量逐年增加2.中國古代數學名著《九章算術》中記載了公元前344年商鞅督造的一種標準量器——商鞅銅方升,其三視圖如圖所示(單位:寸),若取3,當該量器口密閉時其表面積為42.2(平方寸),則圖中x的值為()A.3 B.3.4 C.3.8 D.43.已知集合(),若集合,且對任意的,存在使得,其中,,則稱集合A為集合M的基底.下列集合中能作為集合的基底的是()A. B. C. D.4.復數為純虛數,則()A.i B.﹣2i C.2i D.﹣i5.已知函數的一條切線為,則的最小值為()A. B. C. D.6.下列不等式正確的是()A. B.C. D.7.已知集合,,則()A. B.C. D.8.已知、,,則下列是等式成立的必要不充分條件的是()A. B.C. D.9.已知集合,集合,則()A. B. C. D.10.若函數有兩個極值點,則實數的取值范圍是()A. B. C. D.11.直線x-3y+3=0經過橢圓x2a2+y2bA.3-1 B.3-12 C.12.已知,是兩條不重合的直線,,是兩個不重合的平面,則下列命題中錯誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則二、填空題:本題共4小題,每小題5分,共20分。13.已知,則的值為______.14.在平面直角坐標系中,點在曲線:上,且在第四象限內.已知曲線在點處的切線為,則實數的值為__________.15.如圖,為測量出高,選擇和另一座山的山頂為測量觀測點,從點測得點的仰角,點的仰角以及;從點測得.已知山高,則山高__________.16.已知函數,在區間上隨機取一個數,則使得≥0的概率為.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數.(1)當時,解不等式;(2)若的解集為,,求證:.18.(12分)在四棱錐中,底面是邊長為2的菱形,是的中點.(1)證明:平面;(2)設是線段上的動點,當點到平面距離最大時,求三棱錐的體積.19.(12分)已知橢圓的離心率為,且過點,點在第一象限,為左頂點,為下頂點,交軸于點,交軸于點.(1)求橢圓的標準方程;(2)若,求點的坐標.20.(12分)已知橢圓,點為半圓上一動點,若過作橢圓的兩切線分別交軸于、兩點.(1)求證:;(2)當時,求的取值范圍.21.(12分)在中,角的對邊分別為,已知.(1)求角的大小;(2)若,求的面積.22.(10分)在四棱錐中,底面是平行四邊形,底面.(1)證明:;(2)求二面角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】
根據該廠每年產量未知可判斷A、B、D選項的正誤,根據每年口罩在該廠的產量中所占的比重最大可判斷C選項的正誤.綜合可得出結論.【詳解】由于該工廠年至年的產量未知,所以,從年至年棉簽產量、抽紙產量以及口罩產量的變化無法比較,故A、B、D選項錯誤;由堆積圖可知,從年至年,該工廠生產的口罩占該工廠的總產量的比重是最大的,則三年累計下來產量最多的是口罩,C選項正確.故選:C.【點睛】本題考查堆積圖的應用,考查數據處理能力,屬于基礎題.2.D【解析】
根據三視圖即可求得幾何體表面積,即可解得未知數.【詳解】由圖可知,該幾何體是由一個長寬高分別為和一個底面半徑為,高為的圓柱組合而成.該幾何體的表面積為,解得,故選:D.【點睛】本題考查由三視圖還原幾何體,以及圓柱和長方體表面積的求解,屬綜合基礎題.3.C【解析】
根據題目中的基底定義求解.【詳解】因為,,,,,,所以能作為集合的基底,故選:C【點睛】本題主要考查集合的新定義,還考查了理解辨析的能力,屬于基礎題.4.B【解析】
復數為純虛數,則實部為0,虛部不為0,求出,即得.【詳解】∵為純虛數,∴,解得..故選:.【點睛】本題考查復數的分類,屬于基礎題.5.A【解析】
求導得到,根據切線方程得到,故,設,求導得到函數在上單調遞減,在上單調遞增,故,計算得到答案.【詳解】,則,取,,故,.故,故,.設,,取,解得.故函數在上單調遞減,在上單調遞增,故.故選:.【點睛】本題考查函數的切線問題,利用導數求最值,意在考查學生的計算能力和綜合應用能力.6.D【解析】
根據,利用排除法,即可求解.【詳解】由,可排除A、B、C選項,又由,所以.故選D.【點睛】本題主要考查了三角函數的圖象與性質,以及對數的比較大小問題,其中解答熟記三角函數與對數函數的性質是解答的關鍵,著重考查了推理與運算能力,屬于基礎題.7.C【解析】
求出集合,計算出和,即可得出結論.【詳解】,,,.故選:C.【點睛】本題考查交集和并集的計算,考查計算能力,屬于基礎題.8.D【解析】
構造函數,,利用導數分析出這兩個函數在區間上均為減函數,由得出,分、、三種情況討論,利用放縮法結合函數的單調性推導出或,再利用余弦函數的單調性可得出結論.【詳解】構造函數,,則,,所以,函數、在區間上均為減函數,當時,則,;當時,,.由得.①若,則,即,不合乎題意;②若,則,則,此時,,由于函數在區間上單調遞增,函數在區間上單調遞增,則,;③若,則,則,此時,由于函數在區間上單調遞減,函數在區間上單調遞增,則,.綜上所述,.故選:D.【點睛】本題考查函數單調性的應用,構造新函數是解本題的關鍵,解題時要注意對的取值范圍進行分類討論,考查推理能力,屬于中等題.9.C【解析】
求出集合的等價條件,利用交集的定義進行求解即可.【詳解】解:∵,,∴,故選:C.【點睛】本題主要考查了對數的定義域與指數不等式的求解以及集合的基本運算,屬于基礎題.10.A【解析】試題分析:由題意得有兩個不相等的實數根,所以必有解,則,且,∴.考點:利用導數研究函數極值點【方法點睛】函數極值問題的常見類型及解題策略(1)知圖判斷函數極值的情況.先找導數為0的點,再判斷導數為0的點的左、右兩側的導數符號.(2)已知函數求極值.求f′(x)―→求方程f′(x)=0的根―→列表檢驗f′(x)在f′(x)=0的根的附近兩側的符號―→下結論.(3)已知極值求參數.若函數f(x)在點(x0,y0)處取得極值,則f′(x0)=0,且在該點左、右兩側的導數值符號相反.11.A【解析】
由直線x-3y+3=0過橢圓的左焦點F,得到左焦點為再由FC=2CA,求得A3【詳解】由題意,直線x-3y+3=0經過橢圓的左焦點F,令所以c=3,即橢圓的左焦點為F(-3,0)直線交y軸于C(0,1),所以,OF=因為FC=2CA,所以FA=3又由點A在橢圓上,得3a由①②,可得4a2-24所以e2所以橢圓的離心率為e=3故選A.【點睛】本題考查了橢圓的幾何性質——離心率的求解,其中求橢圓的離心率(或范圍),常見有兩種方法:①求出a,c,代入公式e=ca;②只需要根據一個條件得到關于a,b,c的齊次式,轉化為a,c的齊次式,然后轉化為關于e的方程,即可得12.D【解析】
根據線面平行和面面平行的性質,可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項A:若,,根據線面平行和面面平行的性質,有或,故A正確;選項B:若,,,由線面平行的判定定理,有,故B正確;選項C:若,,,故,所成的二面角為,則,故C正確;選項D,若,,有可能,故D不正確.故選:D【點睛】本題考查了空間中的平行垂直關系判斷,考查了學生邏輯推理,空間想象能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
先求,再根據的范圍求出即可.【詳解】由題可知,故.故答案為:.【點睛】本題考查分段函數函數值的求解,涉及對數的運算,屬基礎題.14.【解析】
先設切點,然后對求導,根據切線方程的斜率求出切點的橫坐標,代入原函數求出切點的縱坐標,即可得出切得,最后將切點代入切線方程即可求出實數的值.【詳解】解:依題意設切點,因為,則,又因為曲線在點處的切線為,,解得,又因為點在第四象限內,則,.則又因為點在切線上.所以.所以.故答案為:【點睛】本題考查了導數的幾何意義,以及導數的運算法則和已知切線斜率求出切點坐標,本題屬于基礎題.15.1【解析】試題分析:在中,,,在中,由正弦定理可得即解得,在中,.故答案為1.考點:正弦定理的應用.16.【解析】試題分析:可以得出,所以在區間上使的范圍為,所以使得≥0的概率為考點:本小題主要考查與長度有關的幾何概型的概率計算.點評:幾何概型適用于解決一切均勻分布的問題,包括“長度”、“角度”、“面積”、“體積”等,但要注意求概率時做比的上下“測度”要一致.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)見解析.【解析】
(1)當時,將所求不等式變形為,然后分、、三段解不等式,綜合可得出原不等式的解集;(2)先由不等式的解集求得實數,可得出,將代數式變形為,將與相乘,展開后利用基本不等式可求得的最小值,進而可證得結論.【詳解】(1)當時,不等式為,且.當時,由得,解得,此時;當時,由得,該不等式不成立,此時;當時,由得,解得,此時.綜上所述,不等式的解集為;(2)由,得,即或,不等式的解集為,故,解得,,,,,當且僅當,時取等號,.【點睛】本題考查含絕對值不等式的求解,同時也考查了利用基本不等式證明不等式,考查推理能力與計算能力,屬于中等題.18.(1)見解析(2)【解析】
(1)連接與交于,連接,證明即可得證線面平行;(2)首先證明平面(只要取中點,可證平面,從而得,同理得),因此點到直線的距離即為點到平面的距離,由平面幾何知識易得最大值,然后可計算體積.【詳解】(1)證明:連接與交于,連接,因為是菱形,所以為的中點,又因為為的中點,所以,因為平面平面,所以平面.(2)解:取中點,連接,因為四邊形是菱形,,且,所以,又,所以平面,又平面,所以.同理可證:,又,所以平面,所以平面平面,又平面平面,所以點到直線的距離即為點到平面的距離,過作直線的垂線段,在所有垂線段中長度最大為,因為為的中點,故點到平面的最大距離為1,此時,為的中點,即,所以,所以.【點睛】本題考查證明線面平行,考查求棱錐的體積,掌握面面垂直與線面垂直的判定與性質是解題關鍵.19.(1);(2)【解析】
(1)由題意得,求出,進而可得到橢圓的方程;(2)由(1)知點,坐標,設直線的方程為,易知,可得點的坐標為,聯立方程,得到關于的一元二次方程,結合根與系數關系,可用表示的坐標,進而由三點共線,即,可用表示的坐標,再結合,可建立方程,從而求出的值,即可求得點的坐標.【詳解】(1)由題意得,解得,所以橢圓的方程為.(2)由(1)知點,,由題意可設直線的斜率為,則,所以直線的方程為,則點的坐標為,聯立方程,消去得:.設,則,所以,所以,所以.設點的坐標為,因為點三點共線,所以,即,所以,所以.因為,所以,即,所以,解得,又,所以符合題意,計算可得,,故點的坐標為.【點睛】本題考查橢圓方程的求法,考查直線與橢圓位置關系的應用,考查平行線的性質,考查學生的計算求解能力,屬于難題.20.(1)見解析;(2).【解析】
(1)分兩種情況討論:①兩切線、中有一條切線斜率不存在時,求出兩切線的方程,驗證結論成立;②兩切線、的斜率都存在,可設切線的方程為,將該直線的方程與橢圓的方程聯立,由可得出關于的二次方程,利用韋達定理得出兩切線的斜率之積為,進而可得出結論;(2)求出點、的坐標,利用兩點間的距離公式結合韋達定理得出,換元,可得出,利用二次函數的基本性質可求得的取值范圍.【詳解】(1)由于點在半圓上,則.①當兩切線、中有一條切線斜率不存在時,可求得兩切線方程為,或,,此時;②當兩切線、的斜率都存在時,設切線的方程為(、的斜率分別為、)
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CECS 10375-2024建筑幕墻用精密鋼型材
- T/CECS 10211-2022給水用電熔鋼骨架增強高密度聚乙烯復合管件
- T/CECS 10018-2019公用終端直飲水設備
- T/CCT 010-2021民用蘭炭產品規格及質量
- T/CCSAS 030-2023傳熱單元操作機械化、自動化設計方案指南
- T/CCMA 0047-2016盾構機操作工
- T/CAQI 124-2020家用和類似用途飲用水處理裝置安全使用年限
- T/CAPEB 00001.7-2022制藥裝備容器和管道第7部分:檢驗
- T/CAPEB 00001.5-2022制藥裝備容器和管道第5部分:管道連接
- java原創面試題及答案
- 作業治療學題庫第七章
- 醫學信息檢索與利用智慧樹知到答案章節測試2023年杭州醫學院
- 并網前設備電氣試驗、繼電保護整定、通訊聯調
- 用表格為網頁布局教學設計
- GB/T 3733.1-1983卡套式端直通管接頭
- 病原微生物實驗室生物安全管理手冊
- 上消化道出血病人的觀察與護理-課件
- 光纜測試報告
- 初中物理教育科學八年級下冊第十一章 機械與功《功》教學設計
- 神經病學人衛版習題集題庫
- (統編版小學語文教師)語文新課標新舊對比變化
評論
0/150
提交評論