




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
四川成都實驗高級中學2025屆高三下學期第一次質量考評數學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,是兩條不重合的直線,是一個平面,則下列命題中正確的是()A.若,,則 B.若,,則C.若,,則 D.若,,則2.設函數的定義域為,滿足,且當時,.若對任意,都有,則的取值范圍是().A. B. C. D.3.已知點是拋物線:的焦點,點為拋物線的對稱軸與其準線的交點,過作拋物線的切線,切點為,若點恰好在以,為焦點的雙曲線上,則雙曲線的離心率為()A. B. C. D.4.已知函數的值域為,函數,則的圖象的對稱中心為()A. B.C. D.5.設集合、是全集的兩個子集,則“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.已知函數的最小正周期為,為了得到函數的圖象,只要將的圖象()A.向左平移個單位長度 B.向右平移個單位長度C.向左平移個單位長度 D.向右平移個單位長度7.設,,則()A. B. C. D.8.已知數列滿足,(),則數列的通項公式()A. B. C. D.9.一個四棱錐的三視圖如圖所示(其中主視圖也叫正視圖,左視圖也叫側視圖),則這個四棱錐中最最長棱的長度是().A. B. C. D.10.定義運算,則函數的圖象是().A. B.C. D.11.已知是虛數單位,則()A. B. C. D.12.已知,是兩條不重合的直線,,是兩個不重合的平面,則下列命題中錯誤的是()A.若,,則或B.若,,,則C.若,,,則D.若,,則二、填空題:本題共4小題,每小題5分,共20分。13.在一底面半徑和高都是的圓柱形容器中盛滿小麥,有一粒帶麥銹病的種子混入了其中.現從中隨機取出的種子,則取出了帶麥銹病種子的概率是_____.14.四邊形中,,,,,則的最小值是______.15.已知函數圖象上一點處的切線方程為,則_______.16.若變量x,y滿足:,且滿足,則參數t的取值范圍為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知數列滿足:對任意,都有.(1)若,求的值;(2)若是等比數列,求的通項公式;(3)設,,求證:若成等差數列,則也成等差數列.18.(12分)已知向量,.(1)求的最小正周期;(2)若的內角的對邊分別為,且,求的面積.19.(12分)[選修4-5:不等式選講]:已知函數.(1)當時,求不等式的解集;(2)設,,且的最小值為.若,求的最小值.20.(12分)購買一輛某品牌新能源汽車,在行駛三年后,政府將給予適當金額的購車補貼.某調研機構對擬購買該品牌汽車的消費者,就購車補貼金額的心理預期值進行了抽樣調查,其樣本頻率分布直方圖如圖所示.(1)估計擬購買該品牌汽車的消費群體對購車補貼金額的心理預期值的方差(同一組中的數據用該組區間的中點值作代表);(2)將頻率視為概率,從擬購買該品牌汽車的消費群體中隨機抽取人,記對購車補貼金額的心理預期值高于萬元的人數為,求的分布列和數學期望;(3)統計最近個月該品牌汽車的市場銷售量,得其頻數分布表如下:月份銷售量(萬輛)試預計該品牌汽車在年月份的銷售量約為多少萬輛?附:對于一組樣本數據,,…,,其回歸直線的斜率和截距的最小二乘估計分別為,.21.(12分)設的內角、、的對邊長分別為、、.設為的面積,滿足.(1)求;(2)若,求的最大值.22.(10分)以坐標原點為極點,軸的正半軸為極軸,且在兩種坐標系中取相同的長度單位,建立極坐標系,判斷直線為參數)與圓的位置關系.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
利用空間位置關系的判斷及性質定理進行判斷.【詳解】解:選項A中直線,還可能相交或異面,選項B中,還可能異面,選項C,由條件可得或.故選:D.【點睛】本題主要考查直線與平面平行、垂直的性質與判定等基礎知識;考查空間想象能力、推理論證能力,屬于基礎題.2、B【解析】
求出在的解析式,作出函數圖象,數形結合即可得到答案.【詳解】當時,,,,又,所以至少小于7,此時,令,得,解得或,結合圖象,故.故選:B.【點睛】本題考查不等式恒成立求參數的范圍,考查學生數形結合的思想,是一道中檔題.3、D【解析】
根據拋物線的性質,設出直線方程,代入拋物線方程,求得k的值,設出雙曲線方程,求得2a=丨AF2丨﹣丨AF1丨=(1)p,利用雙曲線的離心率公式求得e.【詳解】直線F2A的直線方程為:y=kx,F1(0,),F2(0,),代入拋物線C:x2=2py方程,整理得:x2﹣2pkx+p2=0,∴△=4k2p2﹣4p2=0,解得:k=±1,∴A(p,),設雙曲線方程為:1,丨AF1丨=p,丨AF2丨p,2a=丨AF2丨﹣丨AF1丨=(1)p,2c=p,∴離心率e1,故選:D.【點睛】本題考查拋物線及雙曲線的方程及簡單性質,考查轉化思想,考查計算能力,屬于中檔題.4、B【解析】
由值域為確定的值,得,利用對稱中心列方程求解即可【詳解】因為,又依題意知的值域為,所以得,,所以,令,得,則的圖象的對稱中心為.故選:B【點睛】本題考查三角函數的圖像及性質,考查函數的對稱中心,重點考查值域的求解,易錯點是對稱中心縱坐標錯寫為05、C【解析】
作出韋恩圖,數形結合,即可得出結論.【詳解】如圖所示,,同時.故選:C.【點睛】本題考查集合關系及充要條件,注意數形結合方法的應用,屬于基礎題.6、A【解析】
由的最小正周期是,得,即,因此它的圖象向左平移個單位可得到的圖象.故選A.考點:函數的圖象與性質.【名師點睛】三角函數圖象變換方法:7、D【解析】
集合是一次不等式的解集,分別求出再求交集即可【詳解】,,則故選【點睛】本題主要考查了一次不等式的解集以及集合的交集運算,屬于基礎題.8、A【解析】
利用數列的遞推關系式,通過累加法求解即可.【詳解】數列滿足:,,可得以上各式相加可得:,故選:.【點睛】本題考查數列的遞推關系式的應用,數列累加法以及通項公式的求法,考查計算能力.9、A【解析】
作出其直觀圖,然后結合數據根據勾股定定理計算每一條棱長即可.【詳解】根據三視圖作出該四棱錐的直觀圖,如圖所示,其中底面是直角梯形,且,,平面,且,∴,,,,∴這個四棱錐中最長棱的長度是.故選.【點睛】本題考查了四棱錐的三視圖的有關計算,正確還原直觀圖是解題關鍵,屬于基礎題.10、A【解析】
由已知新運算的意義就是取得中的最小值,因此函數,只有選項中的圖象符合要求,故選A.11、B【解析】
根據復數的乘法運算法則,直接計算,即可得出結果.【詳解】.故選B【點睛】本題主要考查復數的乘法,熟記運算法則即可,屬于基礎題型.12、D【解析】
根據線面平行和面面平行的性質,可判定A;由線面平行的判定定理,可判斷B;C中可判斷,所成的二面角為;D中有可能,即得解.【詳解】選項A:若,,根據線面平行和面面平行的性質,有或,故A正確;選項B:若,,,由線面平行的判定定理,有,故B正確;選項C:若,,,故,所成的二面角為,則,故C正確;選項D,若,,有可能,故D不正確.故選:D【點睛】本題考查了空間中的平行垂直關系判斷,考查了學生邏輯推理,空間想象能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求解占圓柱形容器的的總容積的比例求解即可.【詳解】解:由題意可得:取出了帶麥銹病種子的概率.故答案為:.【點睛】本題主要考查了體積類的幾何概型問題,屬于基礎題.14、【解析】
在中利用正弦定理得出,進而可知,當時,取最小值,進而計算出結果.【詳解】,如圖,在中,由正弦定理可得,即,故當時,取到最小值為.故答案為:.【點睛】本題考查解三角形,同時也考查了常見的三角函數值,考查邏輯推理能力與計算能力,屬于中檔題.15、1【解析】
求出導函數,由切線方程得切線斜率和切點坐標,從而可求得.【詳解】由題意,∵函數圖象在點處的切線方程為,∴,解得,∴.故答案為:1.【點睛】本題考查導數的幾何意義,求出導函數是解題基礎,16、【解析】
根據變量x,y滿足:,畫出可行域,由,解得直線過定點,直線繞定點旋轉與可行域有交點即可,再結合圖象利用斜率求解.【詳解】由變量x,y滿足:,畫出可行域如圖所示陰影部分,由,整理得,由,解得,所以直線過定點,由,解得,由,解得,要使,則與可行域有交點,當時,滿足條件,當時,直線得斜率應該不小于AC,而不大于AB,即或,解得,且,綜上:參數t的取值范圍為.故答案為:【點睛】本題主要考查線性規劃的應用,還考查了轉化運算求解的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)3;(2);(3)見解析.【解析】
(1)依據下標的關系,有,,兩式相加,即可求出;(2)依據等比數列的通項公式知,求出首項和公比即可。利用關系式,列出方程,可以解出首項和公比;(3)利用等差數列的定義,即可證出。【詳解】(1)因為對任意,都有,所以,,兩式相加,,解得;(2)設等比數列的首項為,公比為,因為對任意,都有,所以有,解得,又,即有,化簡得,,即,或,因為,化簡得,所以故。(3)因為對任意,都有,所以有,成等差數列,設公差為,,,,,由等差數列的定義知,也成等差數列。【點睛】本題主要考查等差、等比數列的定義以及賦值法的應用,意在考查學生的邏輯推理,數學建模,綜合運用數列知識的能力。18、(1);(2)或【解析】
(1)利用平面向量數量積的坐標運算可得,利用正弦函數的周期性即可求解;(2)由(1)可求,結合范圍,可求的值,由余弦定理可求的值,進而根據三角形的面積公式即可求解.【詳解】(1)∴最小正周期.(2)由(1)知,∴∴,又∴或.解得或當時,由余弦定理得即,解得.此時.當時,由余弦定理得.即,解得.此時.【點睛】本題主要考查了平面向量數量積的坐標運算、正弦函數的周期性,考查余弦定理、三角形的面積公式在解三角形中的綜合應用,考查了轉化思想和分類討論思想,屬于基礎題.19、(1)(2)【解析】
(1)當時,,原不等式可化為,分類討論即可求得不等式的解集;(2)由題意得,的最小值為,所以,由,得,利用基本不等式即可求解其最小值.【詳解】(1)當時,,原不等式可化為,①當時,不等式①可化為,解得,此時;當時,不等式①可化為,解得,此時;當時,不等式①可化為,解得,此時,綜上,原不等式的解集為.(2)由題意得,,因為的最小值為,所以,由,得,所以,當且僅當,即,時,的最小值為.【點睛】本題主要考查了絕對值不等式問題,對于含絕對值不等式的解法有兩個基本方法,一是運用零點分區間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數形結合思想,將絕對值不等式與函數以及不等式恒成立交匯、滲透,解題時強化函數、數形結合與轉化化歸思想方法的靈活應用,這是命題的新動向.20、(1)1.7;(2),見解析;(2)2.【解析】
(1)平均數的估計值為每個小矩形組中值乘以小矩形面積的和;(2)易得,由二項分布列的期望公式計算;(3)利用所給公式計算出回歸直線即可解決.【詳解】(1)由頻率分布直方圖可知,消費群體對購車補貼金額的心理預期值的平均數的估計值為,所以方差的估計值為;(2)由頻率分布直方圖可知,消費群體對購車補貼金額的心理預期值高于3萬元的頻率為,則,所以的分布列為,數學期望;(3)將2018年11月至2019年3月的月份數依次編號為1,2,3,4,5,記,,,,,,由散點圖可知,5組樣本數據呈線性相關關系,因為,,,,則,,所以回歸直線方程為,當時,,預計該品牌汽車在年月份的銷售量約為2萬輛.【點睛】本題考查平均數、方差的估計值、二項分布列及其期望、線性回歸直線方程及其應用,是一個概率與統計的綜合題,本題是一道中檔題.21、(1);(2).【解析】
(1)根據條件形式選擇,然后利用余弦定理和正弦定理化簡,即可求出;(2)由(1)求出角,利用正弦定理和消元思想,可分別用角的三角函數值表示出,即可得到,再利用三角恒等變換,化簡為,即可求出最大值.【詳解】(1)∵,即,∴變形得:,整理得:,又,∴;(2)∵,∴,由正弦定理知,,∴,當且僅當時取最大值.故的最大值為.【點睛】本題主要
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 運動損傷防護考核試卷
- 醫保相關審批管理制度
- 公司榮譽勛章管理制度
- 計算機四級軟件測試分析工具試題及答案
- 醫藥研發中心管理制度
- 安防公司安全管理制度
- 農業項目引進管理制度
- 培訓機構營運管理制度
- 園林苗木施工管理制度
- 遠程工作中的網絡技術試題及答案
- 小學二年級下冊道德與法治《小水滴的訴說》教學教案
- GB∕T 15762-2020 蒸壓加氣混凝土板
- 護士分層級培訓與管理課件
- 廣州版五年級英語下冊期末知識點復習ppt課件
- 照明電氣安裝工程施工方案及工藝方法要求
- 計算方法全書課件完整版ppt整本書電子教案最全教學教程ppt課件
- 公路工程施工安全技術規范-JTG-F90-2015
- 單代號網絡圖
- Q∕GDW 11958-2020 國家電網有限公司應急預案編制規范
- 城垃圾填埋場垃圾滲濾液處理成本核算
- 汽車設計-轉向系設計說明書
評論
0/150
提交評論