




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆重慶實驗中學高三下學期第二次階段性考試綜合試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.對某兩名高三學生在連續9次數學測試中的成績(單位:分)進行統計得到折線圖,下面是關于這兩位同學的數學成績分析.①甲同學的成績折線圖具有較好的對稱性,故平均成績為130分;②根據甲同學成績折線圖提供的數據進行統計,估計該同學平均成績在區間110,120內;③乙同學的數學成績與測試次號具有比較明顯的線性相關性,且為正相關;④乙同學連續九次測驗成績每一次均有明顯進步.其中正確的個數為()A.4 B.3 C.2 D.12.已知復數,則的虛部為()A.-1 B. C.1 D.3.一個幾何體的三視圖如圖所示,則這個幾何體的體積為()A. B.C. D.4.已知實數,滿足,則的最大值等于()A.2 B. C.4 D.85.如圖,設為內一點,且,則與的面積之比為A. B.C. D.6.已知復數,其中為虛數單位,則()A. B. C.2 D.7.已知函數,若所有點,所構成的平面區域面積為,則()A. B. C.1 D.8.如圖,四面體中,面和面都是等腰直角三角形,,,且二面角的大小為,若四面體的頂點都在球上,則球的表面積為()A. B. C. D.9.已知集合,則為()A.[0,2) B.(2,3] C.[2,3] D.(0,2]10.棱長為2的正方體內有一個內切球,過正方體中兩條異面直線,的中點作直線,則該直線被球面截在球內的線段的長為()A. B. C. D.111.2019年10月1日上午,慶祝中華人民共和國成立70周年閱兵儀式在天安門廣場隆重舉行.這次閱兵不僅展示了我國的科技軍事力量,更是讓世界感受到了中國的日新月異.今年的閱兵方陣有一個很搶眼,他們就是院校科研方陣.他們是由軍事科學院、國防大學、國防科技大學聯合組建.若已知甲、乙、丙三人來自上述三所學校,學歷分別有學士、碩士、博士學位.現知道:①甲不是軍事科學院的;②來自軍事科學院的不是博士;③乙不是軍事科學院的;④乙不是博士學位;⑤國防科技大學的是研究生.則丙是來自哪個院校的,學位是什么()A.國防大學,研究生 B.國防大學,博士C.軍事科學院,學士 D.國防科技大學,研究生12.已知函數,若恒成立,則滿足條件的的個數為()A.0 B.1 C.2 D.3二、填空題:本題共4小題,每小題5分,共20分。13.在棱長為的正方體中,是正方形的中心,為的中點,過的平面與直線垂直,則平面截正方體所得的截面面積為______.14.設為銳角,若,則的值為____________.15.的展開式中的系數為__________.16.正三棱柱的底面邊長為2,側棱長為,為中點,則三棱錐的體積為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,函數,其中,是的一個極值點,且.(1)討論的單調性(2)求實數和a的值(3)證明18.(12分)選修4—5;不等式選講.已知函數.(1)若的解集非空,求實數的取值范圍;(2)若正數滿足,為(1)中m可取到的最大值,求證:.19.(12分)某工廠為提高生產效率,需引進一條新的生產線投入生產,現有兩條生產線可供選擇,生產線①:有A,B兩道獨立運行的生產工序,且兩道工序出現故障的概率依次是0.02,0.03.若兩道工序都沒有出現故障,則生產成本為15萬元;若A工序出現故障,則生產成本增加2萬元;若B工序出現故障,則生產成本增加3萬元;若A,B兩道工序都出現故障,則生產成本增加5萬元.生產線②:有a,b兩道獨立運行的生產工序,且兩道工序出現故障的概率依次是0.04,0.01.若兩道工序都沒有出現故障,則生產成本為14萬元;若a工序出現故障,則生產成本增加8萬元;若b工序出現故障,則生產成本增加5萬元;若a,b兩道工序都出現故障,則生產成本增加13萬元.(1)若選擇生產線①,求生產成本恰好為18萬元的概率;(2)為最大限度節約生產成本,你會給工廠建議選擇哪條生產線?請說明理由.20.(12分)在直角坐標系中,點的坐標為,直線的參數方程為(為參數,為常數,且).以直角坐標系的原點為極點,軸的正半軸為極軸,且兩個坐標系取相等的長度單位,建立極坐標系,圓的極坐標方程為.設點在圓外.(1)求的取值范圍.(2)設直線與圓相交于兩點,若,求的值.21.(12分)小麗在同一城市開的2家店鋪各有2名員工.節假日期間的某一天,每名員工休假的概率都是,且是否休假互不影響,若一家店鋪的員工全部休假,而另一家無人休假,則調劑1人到該店維持營業,否則該店就停業.(1)求發生調劑現象的概率;(2)設營業店鋪數為X,求X的分布列和數學期望.22.(10分)已知均為正實數,函數的最小值為.證明:(1);(2).
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用圖形,判斷折線圖平均分以及線性相關性,成績的比較,說明正誤即可.【詳解】①甲同學的成績折線圖具有較好的對稱性,最高130分,平均成績為低于130分,①錯誤;②根據甲同學成績折線圖提供的數據進行統計,估計該同學平均成績在區間[110,120]內,②正確;③乙同學的數學成績與測試次號具有比較明顯的線性相關性,且為正相關,③正確;④乙同學在這連續九次測驗中第四次、第七次成績較上一次成績有退步,故④不正確.故選:C.【點睛】本題考查折線圖的應用,線性相關以及平均分的求解,考查轉化思想以及計算能力,屬于基礎題.2、A【解析】
分子分母同乘分母的共軛復數即可.【詳解】,故的虛部為.故選:A.【點睛】本題考查復數的除法運算,考查學生運算能力,是一道容易題.3、B【解析】
還原幾何體可知原幾何體為半個圓柱和一個四棱錐組成的組合體,分別求解兩個部分的體積,加和得到結果.【詳解】由三視圖還原可知,原幾何體下半部分為半個圓柱,上半部分為一個四棱錐半個圓柱體積為:四棱錐體積為:原幾何體體積為:本題正確選項:【點睛】本題考查三視圖的還原、組合體體積的求解問題,關鍵在于能夠準確還原幾何體,從而分別求解各部分的體積.4、D【解析】
畫出可行域,計算出原點到可行域上的點的最大距離,由此求得的最大值.【詳解】畫出可行域如下圖所示,其中,由于,,所以,所以原點到可行域上的點的最大距離為.所以的最大值為.故選:D【點睛】本小題主要考查根據可行域求非線性目標函數的最值,考查數形結合的數學思想方法,屬于基礎題.5、A【解析】
作交于點,根據向量比例,利用三角形面積公式,得出與的比例,再由與的比例,可得到結果.【詳解】如圖,作交于點,則,由題意,,,且,所以又,所以,,即,所以本題答案為A.【點睛】本題考查三角函數與向量的結合,三角形面積公式,屬基礎題,作出合適的輔助線是本題的關鍵.6、D【解析】
把已知等式變形,然后利用數代數形式的乘除運算化簡,再由復數模的公式計算得答案.【詳解】解:,則.故選:D.【點睛】本題考查了復數代數形式的乘除運算,考查了復數模的求法,是基礎題.7、D【解析】
依題意,可得,在上單調遞增,于是可得在上的值域為,繼而可得,解之即可.【詳解】解:,因為,,所以,在上單調遞增,則在上的值域為,因為所有點所構成的平面區域面積為,所以,解得,故選:D.【點睛】本題考查利用導數研究函數的單調性,理解題意,得到是關鍵,考查運算能力,屬于中檔題.8、B【解析】
分別取、的中點、,連接、、,利用二面角的定義轉化二面角的平面角為,然后分別過點作平面的垂線與過點作平面的垂線交于點,在中計算出,再利用勾股定理計算出,即可得出球的半徑,最后利用球體的表面積公式可得出答案.【詳解】如下圖所示,分別取、的中點、,連接、、,由于是以為直角等腰直角三角形,為的中點,,,且、分別為、的中點,所以,,所以,,所以二面角的平面角為,,則,且,所以,,,是以為直角的等腰直角三角形,所以,的外心為點,同理可知,的外心為點,分別過點作平面的垂線與過點作平面的垂線交于點,則點在平面內,如下圖所示,由圖形可知,,在中,,,所以,,所以,球的半徑為,因此,球的表面積為.故選:B.【點睛】本題考查球體的表面積,考查二面角的定義,解決本題的關鍵在于找出球心的位置,同時考查了計算能力,屬于中等題.9、B【解析】
先求出,得到,再結合集合交集的運算,即可求解.【詳解】由題意,集合,所以,則,所以.故選:B.【點睛】本題主要考查了集合的混合運算,其中解答中熟記集合的交集、補集的定義及運算是解答的關鍵,著重考查了計算能力,屬于基礎題.10、C【解析】
連結并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,推導出OH∥RQ,且OH=RQ=,由此能求出該直線被球面截在球內的線段的長.【詳解】如圖,MN為該直線被球面截在球內的線段連結并延長PO,交對棱C1D1于R,則R為對棱的中點,取MN的中點H,則OH⊥MN,∴OH∥RQ,且OH=RQ=,∴MH===,∴MN=.故選:C.【點睛】本題主要考查該直線被球面截在球內的線段的長的求法,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,是中檔題.11、C【解析】
根據①③可判斷丙的院校;由②和⑤可判斷丙的學位.【詳解】由題意①甲不是軍事科學院的,③乙不是軍事科學院的;則丙來自軍事科學院;由②來自軍事科學院的不是博士,則丙不是博士;由⑤國防科技大學的是研究生,可知丙不是研究生,故丙為學士.綜上可知,丙來自軍事科學院,學位是學士.故選:C.【點睛】本題考查了合情推理的簡單應用,由條件的相互牽制判斷符合要求的情況,屬于基礎題.12、C【解析】
由不等式恒成立問題分類討論:①當,②當,③當,考查方程的解的個數,綜合①②③得解.【詳解】①當時,,滿足題意,②當時,,,,,故不恒成立,③當時,設,,令,得,,得,下面考查方程的解的個數,設(a),則(a)由導數的應用可得:(a)在為減函數,在,為增函數,則(a),即有一解,又,均為增函數,所以存在1個使得成立,綜合①②③得:滿足條件的的個數是2個,故選:.【點睛】本題考查了不等式恒成立問題及利用導數研究函數的解得個數,重點考查了分類討論的數學思想方法,屬難度較大的題型.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
確定平面即為平面,四邊形是菱形,計算面積得到答案.【詳解】如圖,在正方體中,記的中點為,連接,則平面即為平面.證明如下:由正方體的性質可知,,則,四點共面,記的中點為,連接,易證.連接,則,所以平面,則.同理可證,,,則平面,所以平面即平面,且四邊形即平面截正方體所得的截面.因為正方體的棱長為,易知四邊形是菱形,其對角線,,所以其面積.故答案為:【點睛】本題考查了正方體的截面面積,意在考查學生的空間想象能力和計算能力.14、【解析】
∵為銳角,,∴,∴,,故.15、3【解析】
分別用1和進行分類討論即可【詳解】當第一個因式取1時,第二個因式應取含的項,則對應系數為:;當第一個因式取時,第二個因式應取含的項,則對應系數為:;故的展開式中的系數為.故答案為:3【點睛】本題考查二項式定理中具體項對應系數的求解,屬于基礎題16、【解析】
試題分析:因為正三棱柱的底面邊長為,側棱長為為中點,所以底面的面積為,到平面的距離為就是底面正三角形的高,所以三棱錐的體積為.考點:幾何體的體積的計算.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)在區間單調遞增;(2);(3)證明見解析.【解析】
(1)求出,在定義域內,再次求導,可得在區間上恒成立,從而可得結論;(2)由,可得,由可得,聯立解方程組可得結果;(3)由(1)知在區間單調遞增,可證明,取,可得,而,利用裂項相消法,結合放縮法可得結果.【詳解】(1)由已知可得函數的定義域為,且,令,則有,由,可得,可知當x變化時,的變化情況如下表:1-0+極小值,即,可得在區間單調遞增;(2)由已知可得函數的定義域為,且,由已知得,即,①由可得,,②聯立①②,消去a,可得,③令,則,由(1)知,,故,在區間單調遞增,注意到,所以方程③有唯一解,代入①,可得,;(3)證明:由(1)知在區間單調遞增,故當時,,,可得在區間單調遞增,因此,當時,,即,亦即,這時,故可得,取,可得,而,故.【點睛】本題主要考查利用導數研究函數的單調性以及不等式的證明,屬于難題.不等式證明問題是近年高考命題的熱點,利用導數證明不等主要方法有兩個,一是比較簡單的不等式證明,不等式兩邊作差構造函數,利用導數研究函數的單調性,求出函數的最值即可;二是較為綜合的不等式證明,要觀察不等式特點,結合已解答的問題把要證的不等式變形,并運用已證結論先行放縮,然后再化簡或者進一步利用導數證明.18、(1);(2)見解析.【解析】試題分析:(1)討論三種情況去絕對值符號,可得所以,由此得,解得;(2)利用分析法,由(1)知,,所以,因為,要證,只需證,即證,只需證即可得結果.試題解析:(1)去絕對值符號,可得所以,所以,解得,所以實數的取值范圍為.(2)由(1)知,,所以.因為,所以要證,只需證,即證,即證.因為,所以只需證,因為,∴成立,所以解法二:x2+y2=2,x、y∈R+,x+y≥2xy設:證明:x+y-2xy==令,∴原式====當時,19、(1)0.0294.(2)應選生產線②.見解析【解析】
(1)由題意轉化條件得A工序不出現故障B工序出現故障,利用相互獨立事件的概率公式即可得解;(2)分別算出兩個生產線增加的生產成本的期望,進而求出兩個生產線的生產成本期望值,比較期望值即可得解.【詳解】(1)若選擇生產線①,生產成本恰好為18萬元,即A工序不出現故障B工序出現故障,故所求的概率為.(2)若選擇生產線①,設增加的生產成本為(萬元),則的可能取值為0,2,3,5.,,,,所以萬元;故選生產線①的生產成本期望值為(萬元).若選生產線②,設增加的生產成本為(萬元),則的可能取值為0,8,5,13.,,,,所以,故選生產線②的生產成本期望值為(萬元),故應選生產線②.【點睛】本題考查了相互獨立事件的概率,考查了離散型隨機變量期望的應用,屬于中檔題.20、(1)(2)【解析】
(1)首先將曲線化為直角坐標方程,由點在圓外,則解得即可;(2)將直線的參數方程代入圓的普通方程,設、對應的參數分別
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 天津市南開區天津市五十中學2024-2025學年八年級下學期4月期中物理試題(無答案)
- 江蘇卷-2025屆高考物理4月模擬預測卷
- 江蘇省無錫市江陰市第二中學2025屆中考語文試題考前最后一卷預測卷(三)含解析
- 蘇州市吳中區2025年三下數學期末學業水平測試模擬試題含解析
- 湖北省武漢十二中學2024-2025學年初三畢業班第一次聯考英語試題含答案
- 天津五區縣2024-2025學年高三下學期綜合模擬物理試題含解析
- 浙江省寧波市北侖區2025年初三級第三次統測英語試題試卷含答案
- 商丘學院《教育政策與領導》2023-2024學年第二學期期末試卷
- 嘉興學院《數字建模》2023-2024學年第一學期期末試卷
- 天津市濱海新區2025屆初三下學期五校聯考物理試題試卷含解析
- 國家安全法課件1
- bilibili十五大特色人群白皮書
- 2025湖南新華書店集團秋季校園招聘92人高頻重點提升(共500題)附帶答案詳解
- DB3309T 86-2021 晚稻楊梅生產技術規程
- 水電安裝合同范本6篇
- 2024中國兒童營養趨勢洞察報告
- 第一章-地震工程學概論
- 孩子畏難情緒心理健康教育
- 《中國糖尿病防治指南(2024版)》更新要點解讀
- 【MOOC】航空燃氣渦輪發動機結構設計-北京航空航天大學 中國大學慕課MOOC答案
- 手術患者液體管理
評論
0/150
提交評論