2025屆北京海淀中關村中學高三下學期第一次檢測試題考試數學試題試卷_第1頁
2025屆北京海淀中關村中學高三下學期第一次檢測試題考試數學試題試卷_第2頁
2025屆北京海淀中關村中學高三下學期第一次檢測試題考試數學試題試卷_第3頁
2025屆北京海淀中關村中學高三下學期第一次檢測試題考試數學試題試卷_第4頁
2025屆北京海淀中關村中學高三下學期第一次檢測試題考試數學試題試卷_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆北京海淀中關村中學高三下學期第一次檢測試題考試數學試題試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號、考場號和座位號填寫在試題卷和答題卡上。用2B鉛筆將試卷類型(B)填涂在答題卡相應位置上。將條形碼粘貼在答題卡右上角"條形碼粘貼處"。2.作答選擇題時,選出每小題答案后,用2B鉛筆把答題卡上對應題目選項的答案信息點涂黑;如需改動,用橡皮擦干凈后,再選涂其他答案。答案不能答在試題卷上。3.非選擇題必須用黑色字跡的鋼筆或簽字筆作答,答案必須寫在答題卡各題目指定區域內相應位置上;如需改動,先劃掉原來的答案,然后再寫上新答案;不準使用鉛筆和涂改液。不按以上要求作答無效。4.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在直角中,,,,若,則()A. B. C. D.2.如圖所示的莖葉圖為高三某班名學生的化學考試成績,算法框圖中輸入的,,,,為莖葉圖中的學生成績,則輸出的,分別是()A., B.,C., D.,3.在棱長均相等的正三棱柱中,為的中點,在上,且,則下述結論:①;②;③平面平面:④異面直線與所成角為其中正確命題的個數為()A.1 B.2 C.3 D.44.“哥德巴赫猜想”是近代三大數學難題之一,其內容是:一個大于2的偶數都可以寫成兩個質數(素數)之和,也就是我們所謂的“1+1”問題.它是1742年由數學家哥德巴赫提出的,我國數學家潘承洞、王元、陳景潤等在哥德巴赫猜想的證明中做出相當好的成績.若將6拆成兩個正整數的和,則拆成的和式中,加數全部為質數的概率為()A. B. C. D.5.若不等式對恒成立,則實數的取值范圍是()A. B. C. D.6.已知平面向量,滿足,,且,則()A.3 B. C. D.57.已知函數是定義域為的偶函數,且滿足,當時,,則函數在區間上零點的個數為()A.9 B.10 C.18 D.208.等差數列中,已知,且,則數列的前項和中最小的是()A.或 B. C. D.9.已知向量,滿足||=1,||=2,且與的夾角為120°,則=()A. B. C. D.10.甲在微信群中發了一個6元“拼手氣”紅包,被乙?丙?丁三人搶完,若三人均領到整數元,且每人至少領到1元,則乙獲得“最佳手氣”(即乙領到的錢數多于其他任何人)的概率是()A. B. C. D.11.已知某批零件的長度誤差(單位:毫米)服從正態分布,從中隨機取一件,其長度誤差落在區間(3,6)內的概率為()(附:若隨機變量ξ服從正態分布,則,.)A.4.56% B.13.59% C.27.18% D.31.74%12.已知點(m,8)在冪函數的圖象上,設,則()A.b<a<c B.a<b<c C.b<c<a D.a<c<b二、填空題:本題共4小題,每小題5分,共20分。13.古代“五行”學認為:“物質分金、木、土、水、火五種屬性,金克木,木克土,土克水,水克火,火克金.”將五種不同屬性的物質任意排成一列,但排列中屬性相克的兩種物質不相鄰,則這樣的排列方法有_________種.(用數字作答)14.已知向量滿足,,則______________.15.根據如圖所示的偽代碼,若輸出的的值為,則輸入的的值為_______.16.如圖,在菱形ABCD中,AB=3,,E,F分別為BC,CD上的點,,若線段EF上存在一點M,使得,則____________,____________.(本題第1空2分,第2空3分)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(Ⅰ)當時,求曲線在處的切線方程;(Ⅱ)求函數在上的最小值;(Ⅲ)若函數,當時,的最大值為,求證:.18.(12分)已知函數,(Ⅰ)當時,證明;(Ⅱ)已知點,點,設函數,當時,試判斷的零點個數.19.(12分)直線與拋物線相交于,兩點,且,若,到軸距離的乘積為.(1)求的方程;(2)設點為拋物線的焦點,當面積最小時,求直線的方程.20.(12分)一酒企為擴大生產規模,決定新建一個底面為長方形的室內發酵館,發酵館內有一個無蓋長方體發酵池,其底面為長方形(如圖所示),其中.結合現有的生產規模,設定修建的發酵池容積為450米,深2米.若池底和池壁每平方米的造價分別為200元和150元,發酵池造價總費用不超過65400元(1)求發酵池邊長的范圍;(2)在建發酵館時,發酵池的四周要分別留出兩條寬為4米和米的走道(為常數).問:發酵池的邊長如何設計,可使得發酵館占地面積最小.21.(12分)已知函數.(1)當時,解關于的不等式;(2)若對任意,都存在,使得不等式成立,求實數的取值范圍.22.(10分)已知分別是橢圓的左、右焦點,直線與交于兩點,,且.(1)求的方程;(2)已知點是上的任意一點,不經過原點的直線與交于兩點,直線的斜率都存在,且,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

在直角三角形ABC中,求得,再由向量的加減運算,運用平面向量基本定理,結合向量數量積的定義和性質:向量的平方即為模的平方,化簡計算即可得到所求值.【詳解】在直角中,,,,,

若,則故選C.【點睛】本題考查向量的加減運算和數量積的定義和性質,主要是向量的平方即為模的平方,考查運算能力,屬于中檔題.2.B【解析】

試題分析:由程序框圖可知,框圖統計的是成績不小于80和成績不小于60且小于80的人數,由莖葉圖可知,成績不小于80的有12個,成績不小于60且小于80的有26個,故,.考點:程序框圖、莖葉圖.3.B【解析】

設出棱長,通過直線與直線的垂直判斷直線與直線的平行,推出①的正誤;判斷是的中點推出②正的誤;利用直線與平面垂直推出平面與平面垂直推出③正的誤;建立空間直角坐標系求出異面直線與所成角判斷④的正誤.【詳解】解:不妨設棱長為:2,對于①連結,則,即與不垂直,又,①不正確;對于②,連結,,在中,,而,是的中點,所以,②正確;對于③由②可知,在中,,連結,易知,而在中,,,即,又,面,平面平面,③正確;以為坐標原點,平面上過點垂直于的直線為軸,所在的直線為軸,所在的直線為軸,建立如圖所示的直角坐標系;,,,,,;,;異面直線與所成角為,,故.④不正確.故選:.【點睛】本題考查命題的真假的判斷,棱錐的結構特征,直線與平面垂直,直線與直線的位置關系的應用,考查空間想象能力以及邏輯推理能力.4.A【解析】

列出所有可以表示成和為6的正整數式子,找到加數全部為質數的只有,利用古典概型求解即可.【詳解】6拆成兩個正整數的和含有的基本事件有:(1,5),(2,4),(3,3),(4,2),(5,1),而加數全為質數的有(3,3),根據古典概型知,所求概率為.故選:A.【點睛】本題主要考查了古典概型,基本事件,屬于容易題.5.B【解析】

轉化為,構造函數,利用導數研究單調性,求函數最值,即得解.【詳解】由,可知.設,則,所以函數在上單調遞增,所以.所以.故的取值范圍是.故選:B【點睛】本題考查了導數在恒成立問題中的應用,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.6.B【解析】

先求出,再利用求出,再求.【詳解】解:由,所以,,,故選:B【點睛】考查向量的數量積及向量模的運算,是基礎題.7.B【解析】

由已知可得函數f(x)的周期與對稱軸,函數F(x)=f(x)在區間上零點的個數等價于函數f(x)與g(x)圖象在上交點的個數,作出函數f(x)與g(x)的圖象如圖,數形結合即可得到答案.【詳解】函數F(x)=f(x)在區間上零點的個數等價于函數f(x)與g(x)圖象在上交點的個數,由f(x)=f(2﹣x),得函數f(x)圖象關于x=1對稱,∵f(x)為偶函數,取x=x+2,可得f(x+2)=f(﹣x)=f(x),得函數周期為2.又∵當x∈[0,1]時,f(x)=x,且f(x)為偶函數,∴當x∈[﹣1,0]時,f(x)=﹣x,g(x),作出函數f(x)與g(x)的圖象如圖:由圖可知,兩函數圖象共10個交點,即函數F(x)=f(x)在區間上零點的個數為10.故選:B.【點睛】本題考查函數的零點與方程根的關系,考查數學轉化思想方法與數形結合的解題思想方法,屬于中檔題.8.C【解析】

設公差為,則由題意可得,解得,可得.令

,可得

當時,,當時,,由此可得數列前項和中最小的.【詳解】解:等差數列中,已知,且,設公差為,

則,解得

,.

,可得,故當時,,當時,,

故數列前項和中最小的是.故選:C.【點睛】本題主要考查等差數列的性質,等差數列的通項公式的應用,屬于中檔題.9.D【解析】

先計算,然后將進行平方,,可得結果.【詳解】由題意可得:∴∴則.故選:D.【點睛】本題考查的是向量的數量積的運算和模的計算,屬基礎題。10.B【解析】

將所有可能的情況全部枚舉出來,再根據古典概型的方法求解即可.【詳解】設乙,丙,丁分別領到x元,y元,z元,記為,則基本事件有,,,,,,,,,,共10個,其中符合乙獲得“最佳手氣”的有3個,故所求概率為,故選:B.【點睛】本題主要考查了枚舉法求古典概型的方法,屬于基礎題型.11.B【解析】試題分析:由題意故選B.考點:正態分布12.B【解析】

先利用冪函數的定義求出m的值,得到冪函數解析式為f(x)=x3,在R上單調遞增,再利用冪函數f(x)的單調性,即可得到a,b,c的大小關系.【詳解】由冪函數的定義可知,m﹣1=1,∴m=2,∴點(2,8)在冪函數f(x)=xn上,∴2n=8,∴n=3,∴冪函數解析式為f(x)=x3,在R上單調遞增,∵,1<lnπ<3,n=3,∴,∴a<b<c,故選:B.【點睛】本題主要考查了冪函數的性質,以及利用函數的單調性比較函數值大小,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.1.【解析】試題分析:由題意,可看作五個位置排列五種事物,第一位置有五種排列方法,不妨假設排上的是金,則第二步只能從土與水兩者中選一種排放,故有兩種選擇不妨假設排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故總的排列方法種數有5×2×1×1×1=1.考點:排列、組合及簡單計數問題.點評:本題考查排列排列組合及簡單計數問題,解答本題關鍵是理解題設中的限制條件及“五行”學說的背景,利用分步原理正確計數,本題較抽象,計數時要考慮周詳.14.1【解析】

首先根據向量的數量積的運算律求出,再根據計算可得;【詳解】解:因為,所以又所以所以故答案為:【點睛】本題考查平面向量的數量積的運算,屬于基礎題.15.【解析】

算法的功能是求的值,根據輸出的值,分別求出當時和當時的值即可得解.【詳解】解:由程序語句知:算法的功能是求的值,當時,,可得:,或(舍去);當時,,可得:(舍去).綜上的值為:.故答案為:.【點睛】本題考查了選擇結構的程序語句,根據語句判斷算法的功能是解題的關鍵,屬于基礎題.16.【解析】

根據題意,設,則,所以,解得,所以,從而有.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)(Ⅱ)見解析;(Ⅲ)見解析.【解析】試題分析:(Ⅰ)由題,所以故,,代入點斜式可得曲線在處的切線方程;(Ⅱ)由題(1)當時,在上單調遞增.則函數在上的最小值是(2)當時,令,即,令,即(i)當,即時,在上單調遞增,所以在上的最小值是(ii)當,即時,由的單調性可得在上的最小值是(iii)當,即時,在上單調遞減,在上的最小值是(Ⅲ)當時,令,則是單調遞減函數.因為,,所以在上存在,使得,即討論可得在上單調遞增,在上單調遞減.所以當時,取得最大值是因為,所以由此可證試題解析:(Ⅰ)因為函數,且,所以,所以所以,所以曲線在處的切線方程是,即(Ⅱ)因為函數,所以(1)當時,,所以在上單調遞增.所以函數在上的最小值是(2)當時,令,即,所以令,即,所以(i)當,即時,在上單調遞增,所以在上的最小值是(ii)當,即時,在上單調遞減,在上單調遞增,所以在上的最小值是(iii)當,即時,在上單調遞減,所以在上的最小值是綜上所述,當時,在上的最小值是當時,在上的最小值是當時,在上的最小值是(Ⅲ)因為函數,所以所以當時,令,所以是單調遞減函數.因為,,所以在上存在,使得,即所以當時,;當時,即當時,;當時,所以在上單調遞增,在上單調遞減.所以當時,取得最大值是因為,所以因為,所以所以18.(Ⅰ)詳見解析;(Ⅱ)1.【解析】

(Ⅰ)令,;則.易得,.即可證明;(Ⅱ),分①,②,③當時,討論的零點個數即可.【詳解】解:(Ⅰ)令,;則.令,,易得在遞減,在遞增,∴,∴在恒成立.∵在遞減,在遞增.∴.∵;(Ⅱ)∵點,點,∴,.①當時,可知,∴∴,,∴.∴在單調遞增,,.∴在上有一個零點,②當時,,,∴,∴在恒成立,∴在無零點.③當時,,.∴在單調遞減,,.∴在存在一個零點.綜上,的零點個數為1..【點睛】本題考查了利用導數解決函數零點問題,考查了分類討論思想,屬于壓軸題.19.(1);(2)【解析】

(1)設出兩點的坐標,由距離之積為16,可得.利用向量的數量積坐標運算,將轉化為.再利用兩點均在拋物線上,即可求得p的值,從而求出拋物線的方程;(2)設出直線l的方程,代入拋物線方程,由韋達定理發現直線l恒過定點,將面積用參數t表示,求出其最值,并得出此時的直線方程.【詳解】解:(1)由題設,因為,到軸的距離的積為,所以,又因為,,,所以拋物線的方程為.(2)因為直線與拋物線兩個公共點,所以的斜率不為,所以設聯立,得,即,,即直線恒過定點,所以,當時,面積取得最小值,此時.【點睛】本題考查了拋物線的標準方程的求法,直線與拋物線相交的問題,其中垂直條件的轉化,直線過定點均為該題的關鍵,屬于綜合性較強的題.20.(1)(2)當時,,米時,發酵館的占地面積最小;當時,時,發酵館的占地面積最??;當時,米時,發酵館的占地面積最小.【解析】

(1)設米,總費用為,解即可得解;(2)結合(1)可得占地面積結合導函數分類討論即可求得最值.【詳解】(1)由題意知:矩形面積米,設米,則米,由題意知:,得,設總費用為,則,解得:,又,故,所以發酵池邊長的范圍是不小于15米,且不超過25米;(2)設發酵館的占地面積為由(1

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論