2025屆西藏自治區林芝一中高三考前最后一次模擬試題數學試題試卷_第1頁
2025屆西藏自治區林芝一中高三考前最后一次模擬試題數學試題試卷_第2頁
2025屆西藏自治區林芝一中高三考前最后一次模擬試題數學試題試卷_第3頁
2025屆西藏自治區林芝一中高三考前最后一次模擬試題數學試題試卷_第4頁
2025屆西藏自治區林芝一中高三考前最后一次模擬試題數學試題試卷_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆西藏自治區林芝一中高三考前最后一次模擬試題數學試題試卷注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.阿基米德(公元前287年—公元前212年),偉大的古希臘哲學家、數學家和物理學家,他死后的墓碑上刻著一個“圓柱容球”的立體幾何圖形,為紀念他發現“圓柱內切球的體積是圓柱體積的,且球的表面積也是圓柱表面積的”這一完美的結論.已知某圓柱的軸截面為正方形,其表面積為,則該圓柱的內切球體積為()A. B. C. D.2.設、,數列滿足,,,則()A.對于任意,都存在實數,使得恒成立B.對于任意,都存在實數,使得恒成立C.對于任意,都存在實數,使得恒成立D.對于任意,都存在實數,使得恒成立3.已知平行于軸的直線分別交曲線于兩點,則的最小值為()A. B. C. D.4.已知非零向量滿足,,且與的夾角為,則()A.6 B. C. D.35.某市政府決定派遣名干部(男女)分成兩個小組,到該市甲、乙兩個縣去檢查扶貧工作,若要求每組至少人,且女干部不能單獨成組,則不同的派遣方案共有()種A. B. C. D.6.設為等差數列的前項和,若,則A. B.C. D.7.拋物線C:y2=2px的焦點F是雙曲線C2:x2m-y21-m=1A.2+1 B.22+3 C.8.某個小區住戶共200戶,為調查小區居民的7月份用水量,用分層抽樣的方法抽取了50戶進行調查,得到本月的用水量(單位:m3)的頻率分布直方圖如圖所示,則小區內用水量超過15m3的住戶的戶數為()A.10 B.50 C.60 D.1409.某程序框圖如圖所示,若輸出的,則判斷框內為()A. B. C. D.10.已知正方體的體積為,點,分別在棱,上,滿足最小,則四面體的體積為A. B. C. D.11.已知條件,條件直線與直線平行,則是的()A.充要條件 B.必要不充分條件 C.充分不必要條件 D.既不充分也不必要條件12.設等差數列的前項和為,若,則()A.10 B.9 C.8 D.7二、填空題:本題共4小題,每小題5分,共20分。13.記為數列的前項和,若,則__________.14.已知一個四面體的每個頂點都在表面積為的球的表面上,且,,則__________.15.記Sk=1k+2k+3k+……+nk,當k=1,2,3,……時,觀察下列等式:S1n2n,S2n3n2n,S3n4n3n2,……S5=An6n5n4+Bn2,…可以推測,A﹣B=_____.16.若滿足約束條件,則的最大值為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,三棱柱中,平面,點,分別在線段,上,且,,是線段的中點.(Ⅰ)求證:平面;(Ⅱ)若,,,求直線與平面所成角的正弦值.18.(12分)已知函數,其中,為自然對數的底數.(1)當時,證明:對;(2)若函數在上存在極值,求實數的取值范圍。19.(12分)某房地產開發商在其開發的某小區前修建了一個弓形景觀湖.如圖,該弓形所在的圓是以為直徑的圓,且米,景觀湖邊界與平行且它們間的距離為米.開發商計劃從點出發建一座景觀橋(假定建成的景觀橋的橋面與地面和水面均平行),橋面在湖面上的部分記作.設.(1)用表示線段并確定的范圍;(2)為了使小區居民可以充分地欣賞湖景,所以要將的長度設計到最長,求的最大值.20.(12分)在平面直角坐標系中,點,直線的參數方程為為參數),以坐標原點為極點,以軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的直角坐標方程;(2)若直線與曲線相交于不同的兩點是線段的中點,當時,求的值.21.(12分)設函數.(1)若,時,在上單調遞減,求的取值范圍;(2)若,,,求證:當時,.22.(10分)已知,,,,證明:(1);(2).

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

設圓柱的底面半徑為,則其母線長為,由圓柱的表面積求出,代入圓柱的體積公式求出其體積,結合題中的結論即可求出該圓柱的內切球體積.【詳解】設圓柱的底面半徑為,則其母線長為,因為圓柱的表面積公式為,所以,解得,因為圓柱的體積公式為,所以,由題知,圓柱內切球的體積是圓柱體積的,所以所求圓柱內切球的體積為.故選:D【點睛】本題考查圓柱的軸截面及表面積和體積公式;考查運算求解能力;熟練掌握圓柱的表面積和體積公式是求解本題的關鍵;屬于中檔題.2.D【解析】

取,可排除AB;由蛛網圖可得數列的單調情況,進而得到要使,只需,由此可得到答案.【詳解】取,,數列恒單調遞增,且不存在最大值,故排除AB選項;由蛛網圖可知,存在兩個不動點,且,,因為當時,數列單調遞增,則;當時,數列單調遞減,則;所以要使,只需要,故,化簡得且.故選:D.【點睛】本題考查遞推數列的綜合運用,考查邏輯推理能力,屬于難題.3.A【解析】

設直線為,用表示出,,求出,令,利用導數求出單調區間和極小值、最小值,即可求出的最小值.【詳解】解:設直線為,則,,而滿足,那么設,則,函數在上單調遞減,在上單調遞增,所以故選:.【點睛】本題考查導數知識的運用:求單調區間和極值、最值,考查化簡整理的運算能力,正確求導確定函數的最小值是關鍵,屬于中檔題.4.D【解析】

利用向量的加法的平行四邊形法則,判斷四邊形的形狀,推出結果即可.【詳解】解:非零向量,滿足,可知兩個向量垂直,,且與的夾角為,說明以向量,為鄰邊,為對角線的平行四邊形是正方形,所以則.故選:.【點睛】本題考查向量的幾何意義,向量加法的平行四邊形法則的應用,考查分析問題解決問題的能力,屬于基礎題.5.C【解析】

在所有兩組至少都是人的分組中減去名女干部單獨成一組的情況,再將這兩組分配,利用分步乘法計數原理可得出結果.【詳解】兩組至少都是人,則分組中兩組的人數分別為、或、,

又因為名女干部不能單獨成一組,則不同的派遣方案種數為.故選:C.【點睛】本題考查排列組合的綜合問題,涉及分組分配問題,考查計算能力,屬于中等題.6.C【解析】

根據等差數列的性質可得,即,所以,故選C.7.A【解析】

先由題和拋物線的性質求得點P的坐標和雙曲線的半焦距c的值,再利用雙曲線的定義可求得a的值,即可求得離心率.【詳解】由題意知,拋物線焦點F1,0,準線與x軸交點F'(-1,0),雙曲線半焦距c=1,設點Q(-1,y)ΔFPQ是以點P為直角頂點的等腰直角三角形,即PF所以PQ⊥拋物線的準線,從而PF⊥x軸,所以P1,2∴2a=P即a=故雙曲線的離心率為e=故選A【點睛】本題考查了圓錐曲線綜合,分析題目,畫出圖像,熟悉拋物線性質以及雙曲線的定義是解題的關鍵,屬于中檔題.8.C【解析】從頻率分布直方圖可知,用水量超過15m3的住戶的頻率為,即分層抽樣的50戶中有0.3×50=15戶住戶的用水量超過15立方米所以小區內用水量超過15立方米的住戶戶數為,故選C9.C【解析】程序在運行過程中各變量值變化如下表:KS是否繼續循環循環前11第一圈24是第二圈311是第三圈426是第四圈557是第五圈6120否故退出循環的條件應為k>5?本題選擇C選項.點睛:使用循環結構尋數時,要明確數字的結構特征,決定循環的終止條件與數的結構特征的關系及循環次數.尤其是統計數時,注意要統計的數的出現次數與循環次數的區別.10.D【解析】

由題意畫出圖形,將所在的面延它們的交線展開到與所在的面共面,可得當時最小,設正方體的棱長為,得,進一步求出四面體的體積即可.【詳解】解:如圖,

∵點M,N分別在棱上,要最小,將所在的面延它們的交線展開到與所在的面共面,三線共線時,最小,

設正方體的棱長為,則,∴.

取,連接,則共面,在中,設到的距離為,

設到平面的距離為,

.

故選D.【點睛】本題考查多面體體積的求法,考查了多面體表面上的最短距離問題,考查計算能力,是中檔題.11.C【解析】

先根據直線與直線平行確定的值,進而即可確定結果.【詳解】因為直線與直線平行,所以,解得或;即或;所以由能推出;不能推出;即是的充分不必要條件.故選C【點睛】本題主要考查充分條件和必要條件的判定,熟記概念即可,屬于基礎題型.12.B【解析】

根據題意,解得,,得到答案.【詳解】,解得,,故.故選:.【點睛】本題考查了等差數列的求和,意在考查學生的計算能力.二、填空題:本題共4小題,每小題5分,共20分。13.-254【解析】

利用代入即可得到,即是等比數列,再利用等比數列的通項公式計算即可.【詳解】由已知,得,即,所以又,即,,所以是以-4為首項,2為公比的等比數列,所以,即,所以。故答案為:【點睛】本題考查已知與的關系求,考查學生的數學運算求解能力,是一道中檔題.14.【解析】由題意可得,該四面體的四個頂點位于一個長方體的四個頂點上,設長方體的長寬高為,由題意可得:,據此可得:,則球的表面積:,結合解得:.點睛:與球有關的組合體問題,一種是內切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關元素間的數量關系,并作出合適的截面圖,如球內切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.15.【解析】

觀察知各等式右邊各項的系數和為1,最高次項的系數為該項次數的倒數,據此計算得到答案.【詳解】根據所給的已知等式得到:各等式右邊各項的系數和為1,最高次項的系數為該項次數的倒數,∴A,A1,解得B,所以A﹣B.故答案為:.【點睛】本題考查了歸納推理,意在考查學生的推理能力.16.4【解析】

作出可行域如圖所示:由,解得.目標函數,即為,平移斜率為-1的直線,經過點時,.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(Ⅰ)證明見詳解;(Ⅱ).【解析】

(Ⅰ)取中點為,根據幾何關系,求證四邊形為平行四邊形,即可由線線平行推證線面平行;(Ⅱ)以為坐標原點,建立空間直角坐標系,求得直線的方向向量和平面的法向量,即可求得線面角的正弦值.【詳解】(Ⅰ)取的中點,連接,.如下圖所示:因為,分別是線段和的中點,所以是梯形的中位線,所以.又,所以.因為,,所以四邊形為平行四邊形,所以.所以,.所以四邊形為平行四邊形,所以.又平面,平面,所以平面.(Ⅱ)因為,且平面,故可以為原點,的方向為軸正方向建立如圖所示的空間直角坐標系,如下圖所示:不妨設,則,所以,,,,.所以,,.設平面的法向量為,則所以可取.設直線與平面所成的角為,則.故可得直線與平面所成的角的正弦值為.【點睛】本題考查由線線平行推證線面平行,以及用向量法求解線面角,屬綜合中檔題.18.(1)見證明;(2)【解析】

(1)利用導數說明函數的單調性,進而求得函數的最小值,得到要證明的結論;(2)問題轉化為導函數在區間上有解,法一:對a分類討論,分別研究a的不同取值下,導函數的單調性及值域,從而得到結論.法二:構造函數,利用函數的導數判斷函數的單調性求得函數的值域,再利用零點存在定理說明函數存在極值.【詳解】(1)當時,,于是,.又因為,當時,且.故當時,,即.所以,函數為上的增函數,于是,.因此,對,;(2)方法一:由題意在上存在極值,則在上存在零點,①當時,為上的增函數,注意到,,所以,存在唯一實數,使得成立.于是,當時,,為上的減函數;當時,,為上的增函數;所以為函數的極小值點;②當時,在上成立,所以在上單調遞增,所以在上沒有極值;③當時,在上成立,所以在上單調遞減,所以在上沒有極值,綜上所述,使在上存在極值的的取值范圍是.方法二:由題意,函數在上存在極值,則在上存在零點.即在上存在零點.設,,則由單調性的性質可得為上的減函數.即的值域為,所以,當實數時,在上存在零點.下面證明,當時,函數在上存在極值.事實上,當時,為上的增函數,注意到,,所以,存在唯一實數,使得成立.于是,當時,,為上的減函數;當時,,為上的增函數;即為函數的極小值點.綜上所述,當時,函數在上存在極值.【點睛】本題考查利用導數研究函數的最值,涉及函數的單調性,導數的應用,函數的最值的求法,考查構造法的應用,是一道綜合題.19.(1),;(2)米.【解析】

(1)過點作于點再在中利用正弦定理求解,再根據求解,進而求得.再根據確定的范圍即可.(2)根據(1)有,再設,求導分析函數的單調性與最值即可.【詳解】解:過點作于點則,在中,,,由正弦定理得:,,,,,因為,化簡得,令,,且,因為,故令即,記,當時,單調遞增;當時,單調遞減,又,當時,取最大值,此時,的最大值為米.【點睛】本題主要考查了三角函數在實際中的應用,需要根據題意建立角度與長度間的關系,進而求導分析函數的單調性,根據三角函數值求解對應的最值即可.屬于難題.20.(1);(2).【解析】

(1)在已知極坐標方程兩邊同時乘以ρ后,利用ρcosθ=x,ρsinθ=y,ρ2=x2+y2可得曲線C的直角坐標方程;(2)聯立直線l的參數方程與x2=4y由韋達定理以及參數的幾何意義和弦長公式可得弦長與已知弦長相等可解得.【詳解】解:(1)在ρ+ρcos2θ=8sinθ中兩邊同時乘以ρ得ρ2+ρ2(cos2θ﹣sin2θ)=8

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論