2025屆福建省長泰一中解析重點中學高三沖刺高考模擬數學試題(五)_第1頁
2025屆福建省長泰一中解析重點中學高三沖刺高考模擬數學試題(五)_第2頁
2025屆福建省長泰一中解析重點中學高三沖刺高考模擬數學試題(五)_第3頁
2025屆福建省長泰一中解析重點中學高三沖刺高考模擬數學試題(五)_第4頁
2025屆福建省長泰一中解析重點中學高三沖刺高考模擬數學試題(五)_第5頁
已閱讀5頁,還剩17頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆福建省長泰一中解析重點中學高三沖刺高考模擬數學試題(五)注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,若對任意,關于x的不等式(e為自然對數的底數)至少有2個正整數解,則實數a的取值范圍是()A. B. C. D.2.已知集合A={y|y=|x|﹣1,x∈R},B={x|x≥2},則下列結論正確的是()A.﹣3∈AB.3BC.A∩B=BD.A∪B=B3.已知向量,,則與共線的單位向量為()A. B.C.或 D.或4.已知全集為,集合,則()A. B. C. D.5.為雙曲線的左焦點,過點的直線與圓交于、兩點,(在、之間)與雙曲線在第一象限的交點為,為坐標原點,若,且,則雙曲線的離心率為()A. B. C. D.6.有一圓柱狀有蓋鐵皮桶(鐵皮厚度忽略不計),底面直徑為cm,高度為cm,現往里面裝直徑為cm的球,在能蓋住蓋子的情況下,最多能裝()(附:)A.個 B.個 C.個 D.個7.要得到函數的圖象,只需將函數圖象上所有點的橫坐標()A.伸長到原來的2倍(縱坐標不變),再將得到的圖象向右平移個單位長度B.伸長到原來的2倍(縱坐標不變),再將得到的圖像向左平移個單位長度C.縮短到原來的倍(縱坐標不變),再將得到的圖象向左平移個單位長度D.縮短到原來的倍(縱坐標不變),再將得到的圖象向右平移個單位長度8.已知函數,.若存在,使得成立,則的最大值為()A. B.C. D.9.已知是等差數列的前項和,若,設,則數列的前項和取最大值時的值為()A.2020 B.20l9 C.2018 D.201710.若復數z滿足,則復數z在復平面內對應的點在()A.第一象限 B.第二象限 C.第三象限 D.第四象限11.若將函數的圖象上各點橫坐標縮短到原來的(縱坐標不變)得到函數的圖象,則下列說法正確的是()A.函數在上單調遞增 B.函數的周期是C.函數的圖象關于點對稱 D.函數在上最大值是112.國家統計局服務業調查中心和中國物流與采購聯合會發布的2018年10月份至2019年9月份共12個月的中國制造業采購經理指數(PMI)如下圖所示.則下列結論中錯誤的是()A.12個月的PMI值不低于50%的頻率為B.12個月的PMI值的平均值低于50%C.12個月的PMI值的眾數為49.4%D.12個月的PMI值的中位數為50.3%二、填空題:本題共4小題,每小題5分,共20分。13.如圖,直線是曲線在處的切線,則________.14.如圖所示,平面BCC1B1⊥平面ABC,ABC=120,四邊形BCC1B1為正方形,且AB=BC=2,則異面直線BC1與AC所成角的余弦值為_____.15.古代“五行”學認為:“物質分金、木、土、水、火五種屬性,金克木,木克土,土克水,水克火,火克金.”將五種不同屬性的物質任意排成一列,但排列中屬性相克的兩種物質不相鄰,則這樣的排列方法有_________種.(用數字作答)16.在平面直角坐標系中,點的坐標為,點是直線:上位于第一象限內的一點.已知以為直徑的圓被直線所截得的弦長為,則點的坐標__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線與直線.(1)求拋物線C上的點到直線l距離的最小值;(2)設點是直線l上的動點,是定點,過點P作拋物線C的兩條切線,切點為A,B,求證A,Q,B共線;并在時求點P坐標.18.(12分)已知函數,.(1)討論函數的單調性;(2)已知在處的切線與軸垂直,若方程有三個實數解、、(),求證:.19.(12分)已知數列是各項均為正數的等比數列,,且,,成等差數列.(Ⅰ)求數列的通項公式;(Ⅱ)設,為數列的前項和,記,證明:.20.(12分)已知等差數列的公差,且,,成等比數列.(1)求數列的通項公式;(2)設,求數列的前項和.21.(12分)設函數,().(1)若曲線在點處的切線方程為,求實數a、m的值;(2)若對任意恒成立,求實數a的取值范圍;(3)關于x的方程能否有三個不同的實根?證明你的結論.22.(10分)設點,動圓經過點且和直線相切.記動圓的圓心的軌跡為曲線.(1)求曲線的方程;(2)過點的直線與曲線交于、兩點,且直線與軸交于點,設,,求證:為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

構造函數(),求導可得在上單調遞增,則,問題轉化為,即至少有2個正整數解,構造函數,,通過導數研究單調性,由可知,要使得至少有2個正整數解,只需即可,代入可求得結果.【詳解】構造函數(),則(),所以在上單調遞增,所以,故問題轉化為至少存在兩個正整數x,使得成立,設,,則,當時,單調遞增;當時,單調遞增.,整理得.故選:B.【點睛】本題考查導數在判斷函數單調性中的應用,考查不等式成立問題中求解參數問題,考查學生分析問題的能力和邏輯推理能力,難度較難.2.C【解析】試題分析:集合考點:集合間的關系3.D【解析】

根據題意得,設與共線的單位向量為,利用向量共線和單位向量模為1,列式求出即可得出答案.【詳解】因為,,則,所以,設與共線的單位向量為,則,解得或所以與共線的單位向量為或.故選:D.【點睛】本題考查向量的坐標運算以及共線定理和單位向量的定義.4.D【解析】

對于集合,求得函數的定義域,再求得補集;對于集合,解得一元二次不等式,再由交集的定義求解即可.【詳解】,,.故選:D【點睛】本題考查集合的補集、交集運算,考查具體函數的定義域,考查解一元二次不等式.5.D【解析】

過點作,可得出點為的中點,由可求得的值,可計算出的值,進而可得出,結合可知點為的中點,可得出,利用勾股定理求得(為雙曲線的右焦點),再利用雙曲線的定義可求得該雙曲線的離心率的值.【詳解】如下圖所示,過點作,設該雙曲線的右焦點為,連接.,.,,,為的中點,,,,,由雙曲線的定義得,即,因此,該雙曲線的離心率為.故選:D.【點睛】本題考查雙曲線離心率的求解,解題時要充分分析圖形的形狀,考查推理能力與計算能力,屬于中等題.6.C【解析】

計算球心連線形成的正四面體相對棱的距離為cm,得到最上層球面上的點距離桶底最遠為cm,得到不等式,計算得到答案.【詳解】由題意,若要裝更多的球,需要讓球和鐵皮桶側面相切,且相鄰四個球兩兩相切,這樣,相鄰的四個球的球心連線構成棱長為cm的正面體,易求正四面體相對棱的距離為cm,每裝兩個球稱為“一層”,這樣裝層球,則最上層球面上的點距離桶底最遠為cm,若想要蓋上蓋子,則需要滿足,解得,所以最多可以裝層球,即最多可以裝個球.故選:【點睛】本題考查了圓柱和球的綜合問題,意在考查學生的空間想象能力和計算能力.7.B【解析】

分析:根據三角函數的圖象關系進行判斷即可.詳解:將函數圖象上所有點的橫坐標伸長到原來的2倍(縱坐標不變),

得到再將得到的圖象向左平移個單位長度得到故選B.點睛:本題主要考查三角函數的圖象變換,結合和的關系是解決本題的關鍵.8.C【解析】

由題意可知,,由可得出,,利用導數可得出函數在區間上單調遞增,函數在區間上單調遞增,進而可得出,由此可得出,可得出,構造函數,利用導數求出函數在上的最大值即可得解.【詳解】,,由于,則,同理可知,,函數的定義域為,對恒成立,所以,函數在區間上單調遞增,同理可知,函數在區間上單調遞增,,則,,則,構造函數,其中,則.當時,,此時函數單調遞增;當時,,此時函數單調遞減.所以,.故選:C.【點睛】本題考查代數式最值的計算,涉及指對同構思想的應用,考查化歸與轉化思想的應用,有一定的難度.9.B【解析】

根據題意計算,,,計算,,,得到答案.【詳解】是等差數列的前項和,若,故,,,,故,當時,,,,,當時,,故前項和最大.故選:.【點睛】本題考查了數列和的最值問題,意在考查學生對于數列公式方法的綜合應用.10.A【解析】

化簡復數,求得,得到復數在復平面對應點的坐標,即可求解.【詳解】由題意,復數z滿足,可得,所以復數在復平面內對應點的坐標為位于第一象限故選:A.【點睛】本題主要考查了復數的運算,以及復數的幾何表示方法,其中解答中熟記復數的運算法則,結合復數的表示方法求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.11.A【解析】

根據三角函數伸縮變換特點可得到解析式;利用整體對應的方式可判斷出在上單調遞增,正確;關于點對稱,錯誤;根據正弦型函數最小正周期的求解可知錯誤;根據正弦型函數在區間內值域的求解可判斷出最大值無法取得,錯誤.【詳解】將橫坐標縮短到原來的得:當時,在上單調遞增在上單調遞增,正確;的最小正周期為:不是的周期,錯誤;當時,,關于點對稱,錯誤;當時,此時沒有最大值,錯誤.本題正確選項:【點睛】本題考查正弦型函數的性質,涉及到三角函數的伸縮變換、正弦型函數周期性、單調性和對稱性、正弦型函數在一段區間內的值域的求解;關鍵是能夠靈活應用整體對應的方式,通過正弦函數的圖象來判斷出所求函數的性質.12.D【解析】

根據圖形中的信息,可得頻率、平均值的估計、眾數、中位數,從而得到答案.【詳解】對A,從圖中數據變化看,PMI值不低于50%的月份有4個,所以12個月的PMI值不低于50%的頻率為,故A正確;對B,由圖可以看出,PMI值的平均值低于50%,故B正確;對C,12個月的PMI值的眾數為49.4%,故C正確,;對D,12個月的PMI值的中位數為49.6%,故D錯誤故選:D.【點睛】本題考查頻率、平均值的估計、眾數、中位數計算,考查數據處理能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13..【解析】

求出切線的斜率,即可求出結論.【詳解】由圖可知直線過點,可求出直線的斜率,由導數的幾何意義可知,.故答案為:.【點睛】本題考查導數與曲線的切線的幾何意義,屬于基礎題.14.【解析】

將平移到和相交的位置,解三角形求得線線角的余弦值.【詳解】過作,過作,畫出圖像如下圖所示,由于四邊形是平行四邊形,故,所以是所求線線角或其補角.在三角形中,,故.【點睛】本小題主要考查空間兩條直線所成角的余弦值的計算,考查數形結合的數學思想方法,屬于中檔題.15.1.【解析】試題分析:由題意,可看作五個位置排列五種事物,第一位置有五種排列方法,不妨假設排上的是金,則第二步只能從土與水兩者中選一種排放,故有兩種選擇不妨假設排上的是水,第三步只能排上木,第四步只能排上火,第五步只能排上土,故總的排列方法種數有5×2×1×1×1=1.考點:排列、組合及簡單計數問題.點評:本題考查排列排列組合及簡單計數問題,解答本題關鍵是理解題設中的限制條件及“五行”學說的背景,利用分步原理正確計數,本題較抽象,計數時要考慮周詳.16.【解析】

依題意畫圖,設,根據圓的直徑所對的圓周角為直角,可得,通過勾股定理得,再利用兩點間的距離公式即可求出,進而得出點坐標.【詳解】解:依題意畫圖,設以為直徑的圓被直線所截得的弦長為,且,又因為為圓的直徑,則所對的圓周角,則,則為點到直線:的距離.所以,則.又因為點在直線:上,設,則.解得,則.故答案為:【點睛】本題考查了直線與圓的位置關系,考查了兩點間的距離公式,點到直線的距離公式,是基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)證明見解析,或【解析】

(1)根據點到直線的公式結合二次函數的性質即可求出;(2)設,,,,表示出直線,的方程,利用表示出,,即可求定點的坐標.【詳解】(1)設拋物線上點的坐標為,則,時取等號),則拋物線上的點到直線距離的最小值;(2)設,,,,,,直線,的方程為分別為,,由兩條直線都經過點點得,為方程的兩根,,直線的方程為,,,,,共線.又,,,解,,點,是直線上的動點,時,,時,,,或.【點睛】本題考查拋物線的方程的求法,考查直線方程的求法,考查直線過定點的解法,意在考查學生對這些知識的理解掌握水平和分析推理能力.18.(1)①當時,在單調遞增,②當時,單調遞增區間為,,單調遞減區間為(2)證明見解析【解析】

(1)先求解導函數,然后對參數分類討論,分析出每種情況下函數的單調性即可;(2)根據條件先求解出的值,然后構造函數分析出之間的關系,再構造函數分析出之間的關系,由此證明出.【詳解】(1),①當時,恒成立,則在單調遞增②當時,令得,解得,又,∴∴當時,,單調遞增;當時,,單調遞減;當時,,單調遞增.(2)依題意得,,則由(1)得,在單調遞增,在上單調遞減,在上單調遞增∴若方程有三個實數解,則法一:雙偏移法設,則∴在上單調遞增,∴,∴,即∵,∴,其中,∵在上單調遞減,∴,即設,∴在上單調遞增,∴,∴,即∵,∴,其中,∵在上單調遞增,∴,即∴.法二:直接證明法∵,,在上單調遞增,∴要證,即證設,則∴在上單調遞減,在上單調遞增∴,∴,即(注意:若沒有證明,扣3分)關于的證明:(1)且時,(需要證明),其中∴∴∴(2)∵,∴∴,即∵,,∴,則∴【點睛】本題考查函數與倒導數的綜合應用,難度較難.(1)對于含參函數單調性的分析,可通過分析參數的臨界值,由此分類討論函數單調性;(2)利用導數證明不等式常用方法:構造函數,利用新函數的單調性確定函數的最值,從而達到證明不等式的目的.19.(Ⅰ),;(Ⅱ)見解析【解析】

(Ⅰ)由,且成等差數列,可求得q,從而可得本題答案;(Ⅱ)化簡求得,然后求得,再用裂項相消法求,即可得到本題答案.【詳解】(Ⅰ)因為數列是各項均為正數的等比數列,,可設公比為q,,又成等差數列,所以,即,解得或(舍去),則,;(Ⅱ)證明:,,,則,因為,所以即.【點睛】本題主要考查等差等比數列的綜合應用,以及用裂項相消法求和并證明不等式,考查學生的運算求解能力和推理證明能力.20.(1);(2).【解析】

(1)根據等比中項性質可構造方程求得,由等差數列通項公式可求得結果;(2)由(1)可得,可知為等比數列,利用分組求和法,結合等差和等比數列求和公式可求得結果.【詳解】(1)成等比數列,,即,,解得:,.(2)由(1)得:,,,數列是首項為,公比為的等比數列,.【點睛】本題考查等差數列通項公式的求解、分組求和法求解數列的前項和的問題;關鍵是能夠根據通項公式證得數列為等比數列,進而采用分組求和法,結合等差和等比數列求和公式求得結果.21.(1),;(2);(3)不能,證明見解析【解析】

(1)求出,結合導數的幾何意義即可求解;(2)構造,則原題等價于對任意恒成立,即時,,利用導數求最值即可,值得注意的是,可以通過代特殊值,由求出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論