




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
黑龍江省安達市第七中學2025年高三下學期3月聯考數學試題文試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.若函數的圖象過點,則它的一條對稱軸方程可能是()A. B. C. D.2.秦九韶是我國南寧時期的數學家,普州(現四川省安岳縣)人,他在所著的《數書九章》中提出的多項式求值的秦九韶算法,至今仍是比較先進的算法.如圖所示的程序框圖給出了利用秦九韶算法求某多項式值的一個實例.若輸入、的值分別為、,則輸出的值為()A. B. C. D.3.已知為定義在上的奇函數,且滿足當時,,則()A. B. C. D.4.執行如圖所示的程序框圖,則輸出的()A.2 B.3 C. D.5.已知類產品共兩件,類產品共三件,混放在一起,現需要通過檢測將其區分開來,每次隨機檢測一件產品,檢測后不放回,直到檢測出2件類產品或者檢測出3件類產品時,檢測結束,則第一次檢測出類產品,第二次檢測出類產品的概率為()A. B. C. D.6.已知實數,則下列說法正確的是()A. B.C. D.7.為了貫徹落實黨中央精準扶貧決策,某市將其低收入家庭的基本情況經過統計繪制如圖,其中各項統計不重復.若該市老年低收入家庭共有900戶,則下列說法錯誤的是()A.該市總有15000戶低收入家庭B.在該市從業人員中,低收入家庭共有1800戶C.在該市無業人員中,低收入家庭有4350戶D.在該市大于18歲在讀學生中,低收入家庭有800戶8.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.9.劉徽(約公元225年-295年),魏晉期間偉大的數學家,中國古典數學理論的奠基人之一他在割圓術中提出的,“割之彌細,所失彌少,割之又割,以至于不可割,則與圓周合體而無所失矣”,這可視為中國古代極限觀念的佳作,割圓術的核心思想是將一個圓的內接正n邊形等分成n個等腰三角形(如圖所示),當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,運用割圓術的思想,得到的近似值為()A. B. C. D.10.在中,角、、的對邊分別為、、,若,,,則()A. B. C. D.11.如果實數滿足條件,那么的最大值為()A. B. C. D.12.是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.函數的最大值與最小正周期相同,則在上的單調遞增區間為______.14.已知函數,若恒成立,則的取值范圍是___________.15.已知函數,則曲線在點處的切線方程為___________.16.在數列中,已知,則數列的的前項和為__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)若函數在上單調遞減,求實數的取值范圍;(2)若,求的最大值.18.(12分)已知函數,.(1)討論的單調性;(2)若存在兩個極值點,,證明:.19.(12分)設函數.(1)當時,求不等式的解集;(2)若存在,使得不等式對一切恒成立,求實數的取值范圍.20.(12分)已知都是各項不為零的數列,且滿足其中是數列的前項和,是公差為的等差數列.(1)若數列是常數列,,,求數列的通項公式;(2)若是不為零的常數),求證:數列是等差數列;(3)若(為常數,),.求證:對任意的恒成立.21.(12分)已知,,為正數,且,證明:(1);(2).22.(10分)已知等差數列{an}的前n項和為Sn,且(1)求數列{a(2)求數列{1Sn}的前
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
把已知點坐標代入求出,然后驗證各選項.【詳解】由題意,,或,,不妨取或,若,則函數為,四個選項都不合題意,若,則函數為,只有時,,即是對稱軸.故選:B.【點睛】本題考查正弦型復合函數的對稱軸,掌握正弦函數的性質是解題關鍵.2、B【解析】
列出循環的每一步,由此可得出輸出的值.【詳解】由題意可得:輸入,,,;第一次循環,,,,繼續循環;第二次循環,,,,繼續循環;第三次循環,,,,跳出循環;輸出.故選:B.【點睛】本題考查根據算法框圖計算輸出值,一般要列舉出算法的每一步,考查計算能力,屬于基礎題.3、C【解析】
由題設條件,可得函數的周期是,再結合函數是奇函數的性質將轉化為函數值,即可得到結論.【詳解】由題意,,則函數的周期是,所以,,又函數為上的奇函數,且當時,,所以,.故選:C.【點睛】本題考查函數的周期性,由題設得函數的周期是解答本題的關鍵,屬于基礎題.4、B【解析】
運行程序,依次進行循環,結合判斷框,可得輸出值.【詳解】起始階段有,,第一次循環后,,第二次循環后,,第三次循環后,,第四次循環后,,所有后面的循環具有周期性,周期為3,當時,再次循環輸出的,,此時,循環結束,輸出,故選:B【點睛】本題主要考查程序框圖的相關知識,經過幾次循環找出規律是關鍵,屬于基礎題型.5、D【解析】
根據分步計數原理,由古典概型概率公式可得第一次檢測出類產品的概率,不放回情況下第二次檢測出類產品的概率,即可得解.【詳解】類產品共兩件,類產品共三件,則第一次檢測出類產品的概率為;不放回情況下,剩余4件產品,則第二次檢測出類產品的概率為;故第一次檢測出類產品,第二次檢測出類產品的概率為;故選:D.【點睛】本題考查了分步乘法計數原理的應用,古典概型概率計算公式的應用,屬于基礎題.6、C【解析】
利用不等式性質可判斷,利用對數函數和指數函數的單調性判斷.【詳解】解:對于實數,,不成立對于不成立.對于.利用對數函數單調遞增性質,即可得出.對于指數函數單調遞減性質,因此不成立.故選:.【點睛】利用不等式性質比較大小.要注意不等式性質成立的前提條件.解決此類問題除根據不等式的性質求解外,還經常采用特殊值驗證的方法.7、D【解析】
根據給出的統計圖表,對選項進行逐一判斷,即可得到正確答案.【詳解】解:由題意知,該市老年低收入家庭共有900戶,所占比例為6%,則該市總有低收入家庭900÷6%=15000(戶),A正確,該市從業人員中,低收入家庭共有15000×12%=1800(戶),B正確,該市無業人員中,低收入家庭有15000×29%%=4350(戶),C正確,該市大于18歲在讀學生中,低收入家庭有15000×4%=600(戶),D錯誤.故選:D.【點睛】本題主要考查對統計圖表的認識和分析,這類題要認真分析圖表的內容,讀懂圖表反映出的信息是解題的關鍵,屬于基礎題.8、D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.9、A【解析】
設圓的半徑為,每個等腰三角形的頂角為,則每個等腰三角形的面積為,由割圓術可得圓的面積為,整理可得,當時即可為所求.【詳解】由割圓術可知當n變得很大時,這n個等腰三角形的面積之和近似等于圓的面積,設圓的半徑為,每個等腰三角形的頂角為,所以每個等腰三角形的面積為,所以圓的面積為,即,所以當時,可得,故選:A【點睛】本題考查三角形面積公式的應用,考查閱讀分析能力.10、B【解析】
利用兩角差的正弦公式和邊角互化思想可求得,可得出,然后利用余弦定理求出的值,最后利用正弦定理可求出的值.【詳解】,即,即,,,得,,.由余弦定理得,由正弦定理,因此,.故選:B.【點睛】本題考查三角形中角的正弦值的計算,考查兩角差的正弦公式、邊角互化思想、余弦定理與正弦定理的應用,考查運算求解能力,屬于中等題.11、B【解析】
解:當直線過點時,最大,故選B12、B【解析】
分別判斷充分性和必要性得到答案.【詳解】所以(逆否命題)必要性成立當,不充分故是必要不充分條件,答案選B【點睛】本題考查了充分必要條件,屬于簡單題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
利用三角函數的輔助角公式進行化簡,求出函數的解析式,結合三角函數的單調性進行求解即可.【詳解】∵,則函數的最大值為2,周期,的最大值與最小正周期相同,,得,則,當時,,則當時,得,即函數在,上的單調遞增區間為,故答案為:.【點睛】本題考查三角函數的性質、單調區間,利用輔助角公式求出函數的解析式是解決本題的關鍵,同時要注意單調區間為定義域的一個子區間.14、【解析】
求導得到,討論和兩種情況,計算時,函數在上單調遞減,故,不符合,排除,得到答案。【詳解】因為,所以,因為,所以.當,即時,,則在上單調遞增,從而,故符合題意;當,即時,因為在上單調遞增,且,所以存在唯一的,使得.令,得,則在上單調遞減,從而,故不符合題意.綜上,的取值范圍是.故答案為:.【點睛】本題考查了不等式恒成立問題,轉化為函數的最值問題是解題的關鍵.15、【解析】
根據導數的幾何意義求出切線的斜率,利用點斜式求切線方程.【詳解】因為,所以,又故切線方程為,整理為,故答案為:【點睛】本題主要考查了導數的幾何意義,切線方程,屬于容易題.16、【解析】
由已知數列遞推式可得數列的所有奇數項與偶數項分別構成以2為公比的等比數列,求其通項公式,得到,再由求解.【詳解】解:由,得,,則數列的所有奇數項與偶數項分別構成以2為公比的等比數列.,..故答案為:.【點睛】本題考查數列遞推式,考查等差數列與等比數列的通項公式,訓練了數列的分組求和,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)(2)【解析】
(1)根據單調遞減可知導函數恒小于等于,采用參變分離的方法分離出,并將的部分構造成新函數,分析與最值之間的關系;(2)通過對的導函數分析,確定有唯一零點,則就是的極大值點也是最大值點,計算的值并利用進行化簡,從而確定.【詳解】(1)由題意知,在上恒成立,所以在上恒成立.令,則,所以在上單調遞增,所以,所以.(2)當時,.則,令,則,所以在上單調遞減.由于,,所以存在滿足,即.當時,,;當時,,.所以在上單調遞增,在上單調遞減.所以,因為,所以,所以,所以.【點睛】(1)求函數中字母的范圍時,常用的方法有兩種:參變分離法、分類討論法;(2)當導函數不易求零點時,需要將導函數中某些部分拿出作單獨分析,以便先確定導函數的單調性從而確定導函數的零點所在區間,再分析整個函數的單調性,最后確定出函數的最值.18、(1)見解析;(2)見解析【解析】
(1)求得的導函數,對分成兩種情況,討論的單調性.(2)由(1)判斷出的取值范圍,根據韋達定理求得的關系式,利用差比較法,計算,通過構造函數,利用導數證得,由此證得,進而證得不等式成立.【詳解】(1).當時,,此時在上單調遞減;當時,由解得或,∵是增函數,∴此時在和單調遞減,在單調遞增.(2)由(1)知.,,,不妨設,∴,,令,∴,∴在上是減函數,,∴,即.【點睛】本小題主要考查利用導數研究函數的單調區間,考查利用導數證明不等式,考查分類討論的數學思想方法,考查化歸與轉化的數學思想方法,屬于中檔題.19、(Ⅰ).(Ⅱ).【解析】
(Ⅰ)時,根據絕對值不等式的定義去掉絕對值,求不等式的解集即可;(Ⅱ)不等式的解集為,等價于,求出在的最小值即可.【詳解】(Ⅰ)當時,時,不等式化為,解得,即時,不等式化為,不等式恒成立,即時,不等式化為,解得,即綜上所述,不等式的解集為(Ⅱ)不等式的解集為對任意恒成立當時,取得最小值為實數的取值范圍是【點睛】本題考查了絕對值不等式的解法與應用問題,也考查了函數絕對值三角不等式的應用問題,屬于常規題型.20、(1);(2)詳見解析;(3)詳見解析.【解析】
(1)根據,可求得,再根據是常數列代入根據通項與前項和的關系求解即可.(2)取,并結合通項與前項和的關系可求得再根據化簡可得,代入化簡即可知,再證明也成立即可.(3)由(2)當時,,代入所給的條件化簡可得,進而證明可得,即數列是等比數列.繼而求得,再根據作商法證明即可.【詳解】解:.是各項不為零的常數列,則,則由,及得,當時,,兩式作差,可得.當時,滿足上式,則;證明:,當時,,兩式相減得:即.即.又,,即.當時,,兩式相減得:.數列從第二項起是公差為的等差數列.又當時,由得,當時,由,得.故數列是公差為的等差數列;證明:由,當時,,即,,,即,即,當時,即.故從第二項起數列是等比數列,當時,..另外,由已知條件可得,又,,因而.令,則.故對任意的恒成立.【點睛】本題主要考查了等差等比數列的綜合運用,需要熟練運用通項與前項和的關系分析數列的遞推公式繼而求解通項公式或證明等差數列等.同時也考查了數列中的不等式證明等,需要根據題意分析數列為等比數列并求出通項,再利用作商法證明.屬于難題.21、(1)證明見解析;(2)證明見解析.【解析】
(1)利用均值不等式
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- DB31/T 1129-2019母豬早期妊娠診斷B型超聲波法
- 2025年Web開發職業規劃試題及答案
- 2025年中國北京寫字樓行業市場投資可行性調研報告
- 留學歸國人員產學研一體化勞務合作協議
- 建筑工程項目合同終止與安全生產監管服務協議
- 2025年中國半導體光罩行業市場規模調研及投資前景研究分析報告
- 2025年中國板球服裝和裝備行業市場前景預測及投資價值評估分析報告
- 旅行社與景區旅游咨詢服務合作協議
- 影視動畫渲染節點租賃與高效數據存儲合同
- 節能減排技術改造項目收益分配協議
- 導截流驗收報告匯編
- 大班科學《神奇的中草藥》課件
- 信用修復申請書
- 全過程造價控制流程全圖
- 溫州7.23動車事故調查報告介紹課件
- RAL 勞爾色卡電子版
- 造價咨詢質量控制保證措施及服務質量
- 跳棋教學(課堂PPT)
- 火車過橋問題四年級(課堂PPT)
- MSA偏倚分析報告樣本
- 中國顱腦創傷顱內壓監測專家共識
評論
0/150
提交評論