




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
2025屆安徽省合肥市巢湖市匯文實驗學校高三下第一次(4月)月考數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號填寫清楚,將條形碼準確粘貼在考生信息條形碼粘貼區。2.選擇題必須使用2B鉛筆填涂;非選擇題必須使用0.5毫米黑色字跡的簽字筆書寫,字體工整、筆跡清楚。3.請按照題號順序在各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試題卷上答題無效。4.保持卡面清潔,不要折疊,不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線(,)的左、右焦點分別為,以(為坐標原點)為直徑的圓交雙曲線于兩點,若直線與圓相切,則該雙曲線的離心率為()A. B. C. D.2.設i是虛數單位,若復數()是純虛數,則m的值為()A. B. C.1 D.33.已知等比數列滿足,,則()A. B. C. D.4.已知命題,,則是()A., B.,.C., D.,.5.已知集合M={y|y=2x,x>0},N={x|y=lg(2x-xA.(1,+∞) B.(1,2) C.[2,+∞) D.[1,+∞)6.已知曲線的一條對稱軸方程為,曲線向左平移個單位長度,得到曲線的一個對稱中心的坐標為,則的最小值是()A. B. C. D.7.中國古代數學著作《算法統宗》中有這樣一個問題;“三百七十八里關,初行健步不為難,次后腳痛遞減半,六朝才得到其關,要見每朝行里數,請公仔細算相還.”其意思為:“有一個人走了378里路,第一天健步走行,從第二天起腳痛每天走的路程是前一天的一半,走了6天后到達目的地,求該人每天走的路程.”由這個描述請算出這人第四天走的路程為()A.6里 B.12里 C.24里 D.48里8.《周易》是我國古代典籍,用“卦”描述了天地世間萬象變化.如圖是一個八卦圖,包含乾、坤、震、巽、坎、離、艮、兌八卦(每一卦由三個爻組成,其中“”表示一個陽爻,“”表示一個陰爻)若從八卦中任取兩卦,這兩卦的六個爻中恰有兩個陽爻的概率為()A. B. C. D.9.已知為虛數單位,若復數,則A. B.C. D.10.函數與在上最多有n個交點,交點分別為(,……,n),則()A.7 B.8 C.9 D.1011.的展開式中,滿足的的系數之和為()A. B. C. D.12.若復數滿足,其中為虛數單位,是的共軛復數,則復數()A. B. C.4 D.5二、填空題:本題共4小題,每小題5分,共20分。13.已知,則展開式中的系數為__14.給出下列四個命題,其中正確命題的序號是_____.(寫出所有正確命題的序號)因為所以不是函數的周期;對于定義在上的函數若則函數不是偶函數;“”是“”成立的充分必要條件;若實數滿足則.15.已知向量,,且,則實數m的值是________.16.為了抗擊新型冠狀病毒肺炎,某醫藥公司研究出一種消毒劑,據實驗表明,該藥物釋放量與時間的函數關系為(如圖所示),實驗表明,當藥物釋放量對人體無害.(1)______;(2)為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經過______分鐘人方可進入房間.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)據《人民網》報道,美國國家航空航天局(NASA)發文稱,相比20年前世界變得更綠色了,衛星資料顯示中國和印度的行動主導了地球變綠.據統計,中國新增綠化面積的來自于植樹造林,下表是中國十個地區在去年植樹造林的相關數據.(造林總面積為人工造林、飛播造林、新封山育林、退化林修復、人工更新的面積之和)單位:公頃地區造林總面積造林方式人工造林飛播造林新封山育林退化林修復人工更新內蒙61848431105274094136006903826950河北5833613456253333313507656533643河南14900297647134292241715376133重慶2263331006006240063333陜西297642184108336026386516067甘肅325580260144574387998新疆2639031181056264126647107962091青海178414160511597342629寧夏91531589602293882981335北京1906410012400039991053(1)請根據上述數據分別寫出在這十個地區中人工造林面積與造林總面積的比值最大和最小的地區;(2)在這十個地區中,任選一個地區,求該地區新封山育林面積占造林總面積的比值超過的概率;(3)在這十個地區中,從退化林修復面積超過一萬公頃的地區中,任選兩個地區,記X為這兩個地區中退化林修復面積超過六萬公頃的地區的個數,求X的分布列及數學期望.18.(12分)已知函數,.(1)若不等式對恒成立,求的最小值;(2)證明:.(3)設方程的實根為.令若存在,,,使得,證明:.19.(12分)在平面直角坐標系中,已知向量,,其中.(1)求的值;(2)若,且,求的值.20.(12分)已知函數,.(1)當時,求不等式的解集;(2)若函數的圖象與軸恰好圍成一個直角三角形,求的值.21.(12分)在中,角的對邊分別為,且.(1)求角的大?。唬?)已知外接圓半徑,求的周長.22.(10分)在直角坐標系中,曲線的參數方程為(為參數),以原點為極點,以軸正半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的普通方程與曲線的直角坐標方程;(2)設為曲線上位于第一,二象限的兩個動點,且,射線交曲線分別于,求面積的最小值,并求此時四邊形的面積.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
連接,可得,在中,由余弦定理得,結合雙曲線的定義,即得解.【詳解】連接,則,,所以,在中,,,故在中,由余弦定理可得.根據雙曲線的定義,得,所以雙曲線的離心率故選:D【點睛】本題考查了雙曲線的性質及雙曲線的離心率,考查了學生綜合分析,轉化劃歸,數學運算的能力,屬于中檔題.2.A【解析】
根據復數除法運算化簡,結合純虛數定義即可求得m的值.【詳解】由復數的除法運算化簡可得,因為是純虛數,所以,∴,故選:A.【點睛】本題考查了復數的概念和除法運算,屬于基礎題.3.B【解析】由a1+a3+a5=21得a3+a5+a7=,選B.4.B【解析】
根據全稱命題的否定為特稱命題,得到結果.【詳解】根據全稱命題的否定為特稱命題,可得,本題正確選項:【點睛】本題考查含量詞的命題的否定,屬于基礎題.5.B【解析】M=y|y=N==x|∴M∩N=(1,2).故選B.6.C【解析】
在對稱軸處取得最值有,結合,可得,易得曲線的解析式為,結合其對稱中心為可得即可得到的最小值.【詳解】∵直線是曲線的一條對稱軸.,又..∴平移后曲線為.曲線的一個對稱中心為..,注意到故的最小值為.故選:C.【點睛】本題考查余弦型函數性質的應用,涉及到函數的平移、函數的對稱性,考查學生數形結合、數學運算的能力,是一道中檔題.7.C【解析】
設第一天走里,則是以為首項,以為公比的等比數列,由題意得,求出(里,由此能求出該人第四天走的路程.【詳解】設第一天走里,則是以為首項,以為公比的等比數列,由題意得:,解得(里,(里.故選:C.【點睛】本題考查等比數列的某一項的求法,考查等比數列等基礎知識,考查推理論證能力、運算求解能力,考查化歸與轉化思想、函數與方程思想,是基礎題.8.C【解析】
分類討論,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦;從僅有兩個陽爻的有巽、離、兌三卦中取一個,再取沒有陽爻的坤卦,計算滿足條件的種數,利用古典概型即得解.【詳解】由圖可知,僅有一個陽爻的有坎、艮、震三卦,從中取兩卦滿足條件,其種數是;僅有兩個陽爻的有巽、離、兌三卦,沒有陽爻的是坤卦,此時取兩卦滿足條件的種數是,于是所求的概率.故選:C【點睛】本題考查了古典概型的應用,考查了學生綜合分析,分類討論,數學運算的能力,屬于基礎題.9.B【解析】
因為,所以,故選B.10.C【解析】
根據直線過定點,采用數形結合,可得最多交點個數,然后利用對稱性,可得結果.【詳解】由題可知:直線過定點且在是關于對稱如圖通過圖像可知:直線與最多有9個交點同時點左、右邊各四個交點關于對稱所以故選:C【點睛】本題考查函數對稱性的應用,數形結合,難點在于正確畫出圖像,同時掌握基礎函數的性質,屬難題.11.B【解析】
,有,,三種情形,用中的系數乘以中的系數,然后相加可得.【詳解】當時,的展開式中的系數為.當,時,系數為;當,時,系數為;當,時,系數為;故滿足的的系數之和為.故選:B.【點睛】本題考查二項式定理,掌握二項式定理和多項式乘法是解題關鍵.12.D【解析】
根據復數的四則運算法則先求出復數z,再計算它的模長.【詳解】解:復數z=a+bi,a、b∈R;∵2z,∴2(a+bi)﹣(a﹣bi)=,即,解得a=3,b=4,∴z=3+4i,∴|z|.故選D.【點睛】本題主要考查了復數的計算問題,要求熟練掌握復數的四則運算以及復數長度的計算公式,是基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.1.【解析】
由題意求定積分得到的值,再根據乘方的意義,排列組合數的計算公式,求出展開式中的系數.【詳解】∵已知,則,
它表示4個因式的乘積.
故其中有2個因式取,一個因式取,剩下的一個因式取1,可得的項.
故展開式中的系數.
故答案為:1.【點睛】本題主要考查求定積分,乘方的意義,排列組合數的計算公式,屬于中檔題.14.【解析】
對①,根據周期的定義判定即可.對②,根據偶函數滿足的性質判定即可.對③,舉出反例判定即可.對④,求解不等式再判定即可.【詳解】解:因為當時,所以由周期函數的定義知不是函數的周期,故正確;對于定義在上的函數,若,由偶函數的定義知函數不是偶函數,故正確;當時不滿足則“”不是“”成立的充分不必要條件,故錯誤;若實數滿足則所以成立,故正確.正確命題的序號是.故答案為:.【點睛】本題主要考查了命題真假的判定,屬于基礎題.15.1【解析】
根據即可得出,從而求出m的值.【詳解】解:∵;∴;∴m=1.故答案為:1.【點睛】本題考查向量垂直的充要條件,向量數量積的坐標運算.16.240【解析】
(1)由時,,即可得出的值;(2)解不等式組,即可得出答案.【詳解】(1)由圖可知,當時,,即(2)由題意可得,解得則為了不使人身體受到藥物傷害,若使用該消毒劑對房間進行消毒,則在消毒后至少經過分鐘人方可進入房間.故答案為:(1)2;(2)40【點睛】本題主要考查了分段函數的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)人工造林面積與總面積比最大的地區為甘肅省,人工造林面積與總面積比最小的地區為青海??;(2);(3)分布列見詳解,數學期望為【解析】
(1)通過數據的觀察以及計算人工造林面積與造林總面積比值,可得結果.(2)通過數據的觀察以及計算新封山育林面積與造林總面積比值,得出比值超過的地區個數,然后可得結果.(3)計算退化林修復面積超過一萬公頃的地區中選兩個地區總數,退化林修復面積超過六萬公頃的地區的個數為,列出所有取值并計算相應概率,然后可得結果.【詳解】(1)人工造林面積與總面積比最大的地區為甘肅省,人工造林面積與總面積比最小的地區為青海省.(2)記事件A:在這十個地區中,任選一個地區,該地區新封山育林面積占總面積的比值超過根據數據可知:青海地區人工造林面積占總面積比超過,則(3)退化林修復面積超過一萬公頃有6個地區:內蒙、河北、河南、重慶、陜西、新疆,其中退化林修復面積超過六萬公頃有3個地區:內蒙、河北、重慶,所以X的取值為0,1,2所以,,隨機變量X的分布列如下:【點睛】本題考查數據的處理以及離散型隨機變量的分布列與數學期望,審清題意,細心計算,屬基礎題.18.(1)(2)證明見解析(3)證明見解析【解析】
(1)由題意可得,,令,利用導數得在上單調遞減,進而可得結論;(2)不等式轉化為,令,,利用導數得單調性即可得到答案;(3)由題意可得,進而可將不等式轉化為,再利用單調性可得,記,,再利用導數研究單調性可得在上單調遞增,即,即,即可得到結論.【詳解】(1),即,化簡可得.令,,因為,所以,.所以,在上單調遞減,.所以的最小值為.(2)要證,即.兩邊同除以可得.設,則.在上,,所以在上單調遞減.在上,,所以在上單調遞增,所以.設,因為在上是減函數,所以.所以,即.(3)證明:方程在區間上的實根為,即,要證,由可知,即要證.當時,,,因而在上單調遞增.當時,,,因而在上單調遞減.因為,所以,要證.即要證.記,.因為,所以,則..設,,當時,.時,,故.且,故,因為,所以.因此,即在上單調遞增.所以,即.故得證.【點睛】本題考查函數的單調性、最值、函數恒成立問題,考查導數的應用,轉化思想,構造函數研究單調性,屬于難題.19.(1)(2).【解析】
(1)根據,由向量,的坐標直接計算即得;(2)先求出,再根據向量平行的坐標關系解得.【詳解】(1)由題,向量,,則.(2),.,,整理得,化簡得,即,,,,即.【點睛】本題考查平面向量的坐標運算,以及向量平行,是常考題型.20.(1)(2)【解析】
(1)當時,,由可得,(所以,解得,所以不等式的解集
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 主承辦單位安全協議書
- 倉儲一體化服務協議書
- 高空安全協議協議書
- 交房屋定金有效協議書
- 飯店樓上住戶協議書
- 車輛事故出院協議書
- 項目整體回購協議書
- 車間安全管理總結報告
- 食品過期調解協議書
- 送貨司機責任協議書
- 《人類起源的演化過程》閱讀測試題及答案
- MOOC 葡萄酒文化與鑒賞-西北工業大學 中國大學慕課答案
- 學前教育技能實訓報告
- 3D打印在醫療設備中的應用
- 《祝?!?課件(共60張)
- IoT網絡自組織與自愈能力提升
- 建設工程規劃驗收測量技術報告(示例)
- 劉鐵敏《金融專業英語》(第2版)-習題參考答案20
- 小學生主題班會 小學少先隊入隊前教育《六知六會一做》 課件
- 2023中華護理學會團體標準-老年人誤吸的預防
- GH-T 1011-2022 榨菜標準規范
評論
0/150
提交評論