北師版六年級下冊數學課時詳案 總復習_第1頁
北師版六年級下冊數學課時詳案 總復習_第2頁
北師版六年級下冊數學課時詳案 總復習_第3頁
北師版六年級下冊數學課時詳案 總復習_第4頁
北師版六年級下冊數學課時詳案 總復習_第5頁
已閱讀5頁,還剩280頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

總復習

單/元/整/體/說/課

?教材分析

設置總復習的目的主要有三個:一是加強理解數學知識。通過復習,

進一步突出核心概念的價值,鞏固知識技能,查缺補漏。二是加強聯系。通

過總復習,溝通知識之間的聯系,有利于學生形成知識網絡,促進學習遷移。

三是養成良好學習習慣。四是進一步積累數學活動經驗,體會數學思想。

本單元為小學階段所學內容的總復習,教材根據小學一至六年級所學

內容,按課程標準劃分為“數與代數”“圖形與幾何”“統計與概率”三

個領域,最后教材還設置了“解決問題的策略”這一附屬內容。每一部分

內容的呈現又分為“回顧與交流”和“鞏固與應用”兩個方面。“回顧與

交流”這部分主要是對重點知識及學習方法進行梳理;“鞏固與應用”主

要是通過練習,鞏固所學知識,掃清學習中的困難,提高學生應用知識解決

問題的能力。總復習主要是溝通小學階段所學各部分知識之間的聯系,將

所學的知識系統化,也是對小學階段知識的總結。

*教學目標

1知旗戰能k

1.通過復習,加強并鞏固對小學階段所學知識的理解與認識。

2.通過復習,構建各部分知識的內在聯系,將所學的知識系統化,從而

形成知識網絡。

■教學思考'

在解決問題的過程中,總結出解決問題的策略,并嘗試提出新的問題。

問題解測

能應用所學的知識解決簡單的實際問題,體會數學與生活的密切聯系。

‘情感態度

1.體會數學與生活的聯系,增強學生應用數學的意識,感受數學的魅

力。

2.通過對所學知識的復習,培養學生的歸納、整理能力,發展學生的自

信心和克服困難的意志。

?教學重難點

【重點】加深學生對所學數學知識和方法的理解,構建所學知識之

間的聯系,把學習遷移到新的情景中去。

【難點】應用分類、歸納、轉化等多種方法,使相關內容條理化、

系統化,形成知識框架。

?教學建議

總復習是對小學階段數學知識的一次梳理,第一次從整個小學階段的

層面對相關知識進行整合,是學生今后繼續學習和發展的重要基礎。在總

復習的教學過程中,建議如下:

1.處理好分冊教材中“總復習”和六下“總復習”的關系。

分冊的總復習對知識的歸納和總結都帶有一定的局限性,在應用知識

解決問題的過程中,應用的數學思想、方法策略等都是不同的。在六下的

總復習過程中,要著眼整個小學階段的知識,立足學生的知識現狀,從高屋

建甑的層面給予學習指導。

2.引導學生自主建立知識結構。

學生良好的知識結構是在個人思考中初步建立的,教師不能把看似完

整、完美的知識整理內容直接呈現給學生,要通過學生的小組合作、師生

交流,要搭建好構建新的知識體系的橋梁。

3.幫助學生豐富數學活動經驗。

總復習是豐富學生數學活動經驗的良好載體,教材中的每個問題和習

題,都是引導學生進行重新思考的載體,教師需要充分挖掘教材的潛在資

源,使學生在總復習的過程中,不僅梳理了知識,而且體驗到了新方法、新

經驗。

課時劃分

運算的意義(四則運算的意義;應用四則運算解決實際麗)

四則運算的方法及算理;四則混合運算的順序;

利用比較復雜的四則混合運算解決問題

廠數與代數

《估算H估算的意義;算式的估算;估算的應用)

[(11課時)

線與角4?t、射線、直線;角的定義及分類;垂直與平行)

復平面圖形―(認識三角形;認識四邊形;認識圓)

立體圖形|~~(長方體和正方體的監征;圓柱和圓錐的監征;觀察物體)

圖形與幾何平面圖刑的周長與面積Ir平面圖形的周長及周長公式;平面圖形的面、

(7課時)如I囹小時加收F型口積及品裝公式;常用的長度單位和面積單位

立體圖形的表面積和體積Y立體圖形的表面積;立體圖形的體積或容積)

圖形的運動卜~(軸對稱;圖形的旋轉;圖形的平移;圖形的縮冊)

圖形與位置|~(確定物體的相對位置;辯認方初

統計與概率刁統計卜G式統計表;復式統計表;條形、折線、扇形統計圖;平均數)

/fyiJE.n-+)—■■■],-、

郵"」|可能性|~(可能性的大小;游戲規則的公平性;用分數表示可能性的大小)

解決問題的策略

a課時)

課/時/教/學/詳/案

1數與代數

¥教材分析

“數與代數”是總復習的第一個領域,設置了“數的認識”“數的運

算”“式與方程”“正比例與反比例”“常見的量”“探索規律”等專題。

其中內容較多的“數的認識”“數的運算”兩個專題設置了小標題。在每

個小專題之中,統一設置了“回顧與交流”“鞏固與應用”兩部分內容。

“數的認識”主要是對小學學過的各類數進行整理。“數的運算”是

小學數學的基礎和核心,主要復習了四則運算、四則混合運算、估算、運

算律等基本內容,同時突出通過運算解決問題的重要性。“式與方程”是

學生學習方式的一個新領域,強調數學模型在解決問題中的重要性。“正

比例與反比例”滲透著函數思想,是小學階段數與代數領域的重要內容。

“常見的量”主要復習的是小學階段學習的一些數學單位。“探索規律”

主要引導學生發現和探索生活中的數的規律、圖形變化規律等內容。

“數與代數”的專題順序不是遵從知識學習的先后安排的,而是根據

思維的維度進行設置的。

(■)教學目標

1.結合具體的情景,回顧和整理小學階段所學習的數,構建數的認識

的知識網絡;進一步理解自然數、小數、分數、負數、負數的意義及表示

方法;總結整數、小數、分數比較大小的方法,并進行比較。

2.從現實生活中解決實際問題的需要和數學運算的需要兩個不同的

角度體會數的擴充過程,進一步體會數的作用,會用數來表示事物并進行

交流;在估計大數,刻畫數之間有相對大小關系等活動中,發展數感。

3.結合具體情景,進一步理解四則運算的意義及其在現實生活中的應

用;進一步加深對整數、小數、分數四則運算的法則和算理的理解,能正確

進行相關的計算;進一步總結梳理估算的方法,能合理應用估算解決簡單

的實際問題;進一步體會估算的作用,掌握混合運算的順序,加深對運算律

的理解,能合理、靈活、正確地進行四則混合運算。

4.在應用所學知識解決實際問題的過程中,梳理解決問題的思路和策

略,進一步提高發現問題和提出問題的能力,提高分析數量關系的能力,提

高解決實際問題的能力,感受數學與生活的聯系,提高數學的應用價值。能

回顧解決問題的過程,進一步養成檢驗和反思的習慣。

5.回顧和整理小學階段有關代數的初步知識,進一步體會方程的意義

和思想,能用等式的性質解簡單的方程;能用方程表示簡單情景中的等量

關系;能用方程解決簡單的實際問題,進一步體會方程的價值。

6.進一步理解比的意義和比例的意義,深化理解比與分數、除法的關

系,能應用比和比例的知識解決一些簡單的實際問題;結合具體情景,進一

步理解正比例、反比例的意義,在正比例、反比例的問題的回顧與反思中,

體會函數的思想。

7.整理常見的量及其單位,進一步體會各個單位的實際意義,復習單

位之間的換算。

8.進一步經歷探索給定情景中蘊含規律的過程,體驗用含有字母的式

子表示規律,發展應用規律解決問題的意識。

¥教學重難點

【重點】

1.構建小學階段“數與代數”的知識網絡。

2.在解決問題中進一步體會數學的應用價值和解決問題的多種策略。

3.進一步理解相關概念的意義,提升數學運算能力。

【難點】

1.發現和總結“數與代數”領域相關知識的內在聯系。

2.初步感受基本的數學思想方法,增強數學應用意識。

第HI課時數的分類、表示、產生及擴充

■整體設計

(串1教學目標

1.在具體的情景中,回顧和整理小學階段所學習的數:整數(包括自然

數)、小數、分數,以及正數和負數等,溝通各種數之間的關系,構建數的認

識的知識網絡。

2.從現實生活中解決實際問題的需要和數學運算的需要兩個不同的

角度體會數的擴充過程,進一步體會數的作用,感受數系擴充的必要性,會

用數來表示事物并進行交流。

.教學重難點

【重點】總結小學階段各種數之間的關系,嘗試對數進行分類。

【難點】體會數的擴充過程,感受數系擴充的必要。

(和課前準備

【教師準備】PPT課件。

【學生準備】嘗試把數進行分類。

舊教學過程

M考點講解

考點1數的整理

師:“數”在數學世界有著舉足輕重的地位。請回憶一下,在小學階段,

我們都學過哪些數?

預設生1:整數、分數、小數……

生2:自然數、正數、負數……

師:老師要了解一下同學們對這些數的掌握情況,誰能說一說什么是

正數和負數?

預設生1:像1,2,3,4,5,6,7……這樣的數叫作正數。

生2:像-1,-2,-3,-0.8……這樣的數叫作負數。

師:有沒有這樣的數,它既不是正數,也不是負數?

預設生:0既不是正數,也不是負數。

師:剛才大家說了很多我們學過的數:自然數、小數、分數……怎樣對

這些數進行整理?通過整理可以一目了然地看出我們學過了哪些數。發揮

你們的聰明才智,準備展示下自己對數的整理吧。

(投影展示學生對數的整理)

整數

預設生1:數

分數

'正數

生2:數■零

、負數

生3:大于0的數、等于。的數、小于0的數。

師:剛才大家用了各自的方法對學過的數進行了整理,我們就一起評

價下吧。把數整理成整數和分數,要是補充上整數和分數還包括什么數就

細致全面了。

預設生1:整數包括正整數、零、負整數。

生2:分數包括正分數和負分數。

師:“正數、零和負數”這樣的對數的整理你們贊同嗎?

預設生1:贊同。正數包括正整數和正分數。

生2:贊同。負數包括負整數和負分數。

師:”大于0的數、等于。的數、小于0的數”這樣的對數的整理你

們贊同嗎?

預設生1:贊同。大于。的數可以包括正整數和正分數。

生2:贊同。小于0的數可以包括:負整數和負分數。

師:通過剛才對數的整理,我們發現對數的整理方法是多種的,各種數

之間也不是各自孤立的,都和其他數之間存在一定的聯系。

[設計意圖]通過對數的整理,幫助學生構建較完整的數的知識體系。

同時培養學生用圖表整理所學知識的能力。

例1

師:根據剛才對數的整理,怎樣在圈里填上合適的數?這就需要分析這

些數的特點,然后根據數的特點填上合適的數。

預設生1:我填寫的數是-24。因為這些數都是整數。

生2:我填寫的數是11。因為這些數都是整數。

[解答]如13,-7等整數均可。

【鞏固練習】

在下面圈里填上適當的數。

【參考答案】正分數、負分數均可,例如-白,《等。

1411

考點2在圖形上表示整數、小數、分數

師:(PPT課件出示第63頁問題2的圖)箭頭所指的點分別表示什么

數?

預設生1:左數第一個箭頭表示7.5。

生2:左數第二個箭頭表示"

4

生3:左數第三個箭頭表示£(21)。

生4:左數第四個箭頭表示4.5。

師:借助上面的圖形,可以表示哪些數?

預設生:整數,小數,分數。

師:在上面圖形中,數的大小和在圖形中的位置有什么關系?

預設生:右邊的數比左邊的數大。

例2說一說下面圖形中最右面圓點表示什么數,并指出最小、最大

的數分別是哪個。

-1.5

I

-2-1

師:這個問題和我們前面的問題有類似之處,先自主思考,然后說出你

的答案。

預設生1:最右面圓點表示T。

生2:最小的數是-2。

生3:最大的數是-1。

[解答]最右面圓點表示的數是-1,最小的數是-2,最大的數是-1。

[設計意圖]本例題是對教材問題的變形,主要考查學生對知識的理

解和靈活應用的能力,同時也能提升學生的學習興趣。

考點3數的產生和擴充

一、生活需要產生數。

師:(PPT課件出示教材第64頁問題3情景圖第一幅)為了表示數量的

多少產生了什么數?

預設生:正整數。

師:(PPT課件出示教材第64頁問題3情景圖第二幅)為了表示“沒有”,

產生了什么數?

預設生:0。

師:(PPT課件出示教材第64頁問題3情景圖第三幅)為了表示每一份

的多少,產生了什么數?

預設生:分數。

師:(PPT課件出示教材第64頁問題3情景圖第四幅)為了表示相應的

實際意義,產生了什么數?

預設生:負數。

師:通過剛才的四個問題,同學們能簡單總結一下數的產生和擴充的

原因嗎?

預設生:實際生活的需要。

二、(拓展)計算需要產生擴充數。

師:(PPT課件出示教材第64頁問題4(1))如果計算能夠繼續進行下去,

需要把數擴充到什么數?

預設生:小數或分數。

師:(PPT課件出示教材第64頁問題4⑵)如果計算能夠繼續進行下去,

需要把數擴充到什么數?

預設生:負數。

[設計意圖]回顧引入新數的過程,體會現實生活的需要是數的擴充

的一個重要原因,感受數與現實生活的密切聯系。通過計算,使學生了解整

數的局限性,弄清負數產生的原因。從而進一步感受到數的擴充源于人們

認識的提高。

叵隨堂練習

1.判斷正誤(正確的打V,錯誤的打X)。

(1)數包括整數和分數。()

(2)分數包括正分數、零、負分數。()

(3)小數和分數之間可以比較大小。()

(4)整理數的方法是多種的。()

(5)生活的需要是數產生的一個重要原因。()

2.讀出下列各數。

+15,-3.3,+15.7,-6

3.比較大小。

-201-50-4

【參考答案】1.(1)V(2)X(3)V(4)V(5)V2,正十五

負三點三正十五點七負六3.<<

叵課堂小結

師:通過對數的整理,你們對數有了哪些新的認識?

預設生1:整理數的方法不是唯一的。

生2:各種數之間都有一定的聯系。

師:能否借助于圖形表示整數、小數和分數?

預設生:可以。

師:數是古人憑空想象出來的嗎?

預設生:不是,是在生活需要和運算需要中產生的。

區作業設計

作業1

在下面的圖形中表示出1.5和4|0

1IIiIII1一

01234567

作業2

一、填空

1.對數進行整理,可以分成()和分數兩部分。

2.最小的自然數是()。

3.對分數進行整理,可分成()和負分數兩部分。

4.最大的三位整數是(),最小的三位整數是()。

5.如果向東走20米記作+20米,那么向西走15米,應該記作()米。

6.-9,-3.2,0,111,|,-15,423o

其中()是整數,()是自然數。

二、在直線上面的口里填上適當的假分數,在直線下面的口里填上適當的

帶分數

2

5

01

三、分別用百分數、小數、分數表示直線上的各點

0

占H

分數s

數m

小□

四、用數字表示溫度計上面的溫度

:

-■et

-

n

c

-n

*3|,

1|,

*-1“

-

4尸

【參考答案】

1.54T

1]■-111.1

作業1:0123457

作業2:

、1.整數2.03.正分數4.999-9995,-15

6.-9,0,111,-15,4230,111,423

二、上面:之工,竺,竺。下面:止,23,3三。

5555555

三、5%-0.050.2

20

四、50-10

舊板書設計

數的分類、表示、產生及擴充

例1在下面圈里填上一個適當的數。

例2說一說下面圖形中最右面圓點表示什么數,

并指出最小、最大的數分別是哪個。

-L5

I

-2-1

區L教學反思

(G成功之處

本課時的教學設計思路是通過教師的引導,讓學生自主地構建對數進

行整理的知識體系,在此基礎上,引導學生進一步發現各種數之間的內在

聯系,最后從生活需要和計算需要兩個角度幫助學生認識數的不斷發展和

擴充。這種教學設計思路,準確把握了課程標準的要求,充分領會了教材的

設計意圖,使學生在復習的過程中,在整理了數的知識的同時,從更高層次

上理解了各種數之間的內在聯系。

不足之處

教學中沒有充分聽取和肯定學生的意見。

再教設計

在對數進行整理時,充分聽取和肯定學生的意見,要給予學生更多肯

定和鼓勵。在認識數的發展和擴充時一,可引導學生回憶開始學習小數和分

數時的內容。

第②課時整數

O—整體設寸

教學目標

1.進一步理解整數的意義、表示方法等知識。回顧總結整數比較大小

的方法。在估計大數、刻畫數之間的相對大小關系等活動中發展數感。

2.回顧整理有關因數、倍數、質數、合數、奇數、偶數等概念。鞏固

求公因數、最大公因數、公倍數、最小公倍數的方法。

(勺教學重難點

【重點】正確認識整數,構建完整的整數知識體系。

【難點】體會數學與生活的密切聯系,發展數感。

(和課前準備

【教師準備】PPT課件。

【學生準備】預習教材第65頁回顧與交流的內容。

舊教學過程

至考點講解

考點1整數的意義

師:(PPT課件出示教材第65頁“回顧與交流”問題1)整數在具體情

景中的主要意義是:基數(表示物體的個數)、序數、測量的結果、編碼。

你們能具體說說問題中的數字是哪種意義嗎?

預設生1:“第1屆奧運會”中的“1”表示序數。

生2:“長江是中國第一大河,流經11個省、市、自治區”中的“11”

表示基數。

生3:“拉薩的區號為0891”中的數字0891表示的是編碼。

生4:“(拉薩)最低氣溫零下16.5C”數字表示測量的結果。

[設計意圖]教師先對整數的意義進行總結,便于學生理解具體情景

中整數的意義,降低學習難度,提升復習效率。

師:同學們說的很正確。在我們的生活當中,數字的應用是非常普遍的,

簡直可以說我們就生活在各種各樣的數字之中。你們能理解這些數字的準

確含義嗎?

我們再一起研究下這個例題。

題說一說下面信息中相關數的具體意義。

至U,我國將在全國重要綜合交通樞紐城市,打造100個以大型高鐵車

站為主和50個以機場為主的現代化、立體式綜合客運樞紐。

師:整數產生于生活,理解整數的意義同樣需要與具體的生活情景相

結合。大家能說說這些數字的含義嗎?

預設生1:“到”的數字表示序數。

生2:“打造100個以大型高鐵車站……”中的數字表示基數(個數)。

生3:“50個以機場為主的……”中的數字表示個數。

[解答]表示序數,“100”和“50”表示個數。

考點2十進制計數法和計數單位

(PPT課件出示教材第65頁問題2)

你能用盡可能多的方式表示1243嗎?

?IIa

.............................,■

II.nw':t::t:miT":M

..........'1'1II'1m-l.-..,

18pluuliulJrUlliHIHJ也出出U3

I不I萬I下I不I

~1243=1xKXMM-2x](Xh4x10+3

師:你還能用哪些方式表示“1243”呢?

預設生1:

生2:1243=1100+110+33。

師:剛才同學們用了各自的方式表示了“1243”這個數,盡管形式不同,

但都利用了十進制表示這個數。哪位同學能回顧一下什么是十進制?

(生用自己的語言進行表述)

(PPT課件出示數位表)

位億億億位萬萬萬位位位位位

位位位位位位

數千百十千百十

…億萬千百十個

單億億億萬萬萬

(PPT課件出示十進制定義)

五數麗s京看有相鄰欣兩個工教玳位之間

的進率都是1"十這種以一十”為基礎進位的計數

方法.叫作十進制作十法.

m在數位順序表中,整數部分從右往左第二位是(),它的計

數單位是(),第九位是(),它的計數單位是()。

(學生結合數位表課件進行交流)

[解答]十位十億位億

考點3整數的讀寫和比較大小

(PPT課件順序出示相關知識梳理)

整數的讀法,從高位到低位.一級一級地讀.

斛一級末尾的。都不榛出來.其他數位連續有幾

個。都只讀一個零.

整數的寫法:從高位列低位.一級一級地寫.

哪一個數位上一個單位也沒有.就在那個數位上

寫0.

1.位數不同的正整數的比較方法:如果位數

不同.那么位數多的數就大.

2.位數相同的正整數的比較方法:如果位數

相同.那么最高位上數大的數就大:如果最高位上

的數相同.那么就比較下一位上的數.以此類推.

直到比較出數的大小.

1.改寫整數:多位數改寫成以??萬”或“億”作

單位的數.先把原數的小數點向左移動4位或8

位.再在數的后面寫??萬?■或“億”字.得到的結果是

準確值,與原數相等.

2.省略尾數:省略-萬?■或一億■?位后面的尾數.

先用??四舍五人”法省略指定數位后面的尾數,再

在后面加寫相應的計數單位.即寫上-萬”或"億”

字.得到的值是近似數.與原來的數是不相等的.

磔1(1)358689007讀作()。

(2)七十五億三千七百萬八千零六寫作()。

(學生嘗試獨立準確完成)

[解答](1)三億五千八百六十八萬九千零七

(2)7537008006

m比較下面每組數的大小,在。里填上“>”或“=”。

005157098

115001000390089404845672

4478030448703

(學生嘗試獨立準確完成)

[解答]<>><<

甌一個六位數十萬位上的數是最大的一位數,萬位上的數是最小

的合數,百位上的數是最小的質數,其余各位上的數都是0,則這個數寫作

(),讀作(),省略萬位后面的尾數約是()。

師:什么是合數?

預設生:自然數中除了能被1和本身整除外,還能被其他的數整除的

數。

師:什么是質數?

預設生:一個大于1的自然數,除了1和它本身外,不能被其他自然數

整除。

[解答]940200九十四萬零二百94萬

[設計意圖]從整數概念、整數的組成、整數大小的比較方法等方面

系統地復習了整數的知識,使學生對整數的認識又上升到一個新的階段,

幫助學生在數學思想上加以提升。

考點4倍數與因數

一、倍數與因數。

師:什么是倍數和因數?

(生回憶、交流)

(PPT課件展示)

居數和因數鬲運叉T而然fta(a^O)睢自然數

力.所得的積r就是u和6的倍數,a和〃就

是r的因數.

師:倍數和因數有哪些特征?

(生回憶、交流)

(PPT課件展示)

一個數的倍數的個數是無限的?其中?小的

倍數是它本身,一個數的因數的個數是有限的.其

中最小的因數是1.最大的因數是它本身.

師:2,5,3的倍數有什么特征?

(生回憶、交流)

(PPT課件展示)

2的倍數特征,個位上是0.2.4.6.8的數.

5的倍數特征,個位上是0或5的數.

3的倍數特征:一個數各個數位上的數字和是

3的倍數.這個數就是3的倍數.

師:根據倍數的特征,你們能說一下什么是奇數和偶數嗎?

預設生:不是2的倍數的整數叫作奇數,是2的倍數的整數叫作偶數。

m在不大于100的正整數中,最大的5的倍數是(),5的倍數

有()個。

[解答]10020

二、最大公因數和最小公倍數。

師:什么是最大公因數?

預設生:幾個數公有的因數,叫作這幾個數的公因數,其中最大的一

個,叫作這幾個數的最大公因數。

師:什么是最小公倍數?

預設生:幾個數公有的倍數,叫作這幾個數的公倍數,其中最小的一

個,叫作這幾個數的最小公倍數。

例7求下面每組數的最大公因數和最小公倍數。

⑴15和7;

(2)15和30。

[解答](1)15和7的最大公因數為1,最小公倍數為105o(2)15和

30的最大公因數為15,最小公倍數為30o

[設計意圖]本考點設計的知識較多,且知識之間的關聯度比較密切,

采用問題組的形式進行復習,便于學生分解知識容量,有利于降低課時復

習難度。

陷隨堂練習

1.完成教材第66頁“鞏固與應用”第1題。

指名學生匯報。

2.完成教材第66頁“鞏固與應用”第2題。

要求學生獨立完成表格。

3.完成教材第66頁“鞏固與應用”第6題。

(1)先用數字卡片擺一擺,再完成填空。

(2)要求學生填寫完成后,在小組內交流填寫結果。

(3)反饋匯報。

【參考答案】1.130104082.填表略9926.37萬>5066.8

萬>2454.82萬>2308.51萬>2205.33萬>164.58萬3.(1)52,72

57,75,27,7225,75(2)75(3)752257

叵課堂小結

通過復習,我們進一步明確了整數的意義及讀寫方法。在回顧比較整

數大小的方法、“0”的作用、倍數和因數的相關知識、大數的讀寫等知

識的過程中,讓我們對整數知識有了系統了解,構建了完整的整數知識網

絡。

w作業設計

作業1

教材第66頁“鞏固與應用”第3,4,5,7題。

作業2

一、想一想,填一填

1.最高位是億位的整數是()位數。

2.最小的五位數是(),最大的五位數是(),它們相差

()。

3.三億零四百五十萬五千米寫作(),改寫成用“億”作單位

的數是(),省略億位后面的尾數約是()。

4.根據全國第五次人口普查統計結果,我國總人口已達到12根330000人,

讀作(),改寫成用“億”作單位的數是(),

省略億位后面的尾數約是()億人。

5.一個數的最小倍數是12,這個數有()個因數。

6.兩個質數的最小公倍數是15,這兩個質數分別是(),()。

7.在0,2,3,6,8和5這六個數中,選出4個組成同時是2,3,5的倍數的最

大四位數是()。

8.月球表面白天的平均溫度是零上126℃,記作:()℃,夜間的平均溫

度是零下150℃,記作()℃。

9.一個三位數的最高位是最小的合數,最低位是最小的質數,它又是2,3

的倍數,這個三位數最大是(),最小是()。

10.既是3的倍數,又是5的倍數的最大兩位奇數是()。

二、我是聰明的小法官

1.一個自然數,不是偶數就是奇數,不是質數就是合數。()

2.自然數都是整數,整數都是自然數。()

3.比2小的整數只有2個。()

4.在數軸上,右邊的點表示的數總比左邊的點表示的數大。()

5.22的因數有4個。()

6.如果a和b只有公因數1,那么a和b中至少有一個質數。()

三、在。里填上“心或“二”

7890759260059802600589

-800-8110-11

-600+80080

四、選一選

1.一個數,它的最高位是十億位,這個數是()位數。

A.八B.九C.十D.H-一

2.64口910省略萬位后面的尾數約是64萬,口中能填()o

A.1個數B.4個數C.5個數D.3個數

3.一個合數至少有()個因數,一個質數只能有()個因數。

A.1B.2C.3D.無數

4.一個正方形的邊長是一個奇數,這個正方形的周長一定是()o

A.質數B.奇數C.偶數

五、按要求分類

1,20,14,25,37,64,104,417,23,398。

六、解決問題

1.一個三位數,十位上的數是0,個位與百位上的數字之和是最小的質數,

這個三位數是多少?

2.一只蝸牛沿著10米高的柱子從底部往上爬,每天從清晨到傍晚共向上

爬5米,夜間下滑4米,像這樣,從某天清晨開始,它需要幾天才能爬到柱子

的頂端?

【參考答案】

作業1:3.(1)表中第1列填

-1180,-60,+2800,-150,-350,+200,-430,-2680第2列填

3000,1820,1760,4560,4410,4060,4260,3830,1150。

(2)結余1150元。4.約120只,把螞蟻平均分成6份,每份20

只,20X6=120(只)。5.⑴千萬943010萬(2)1000099991000

18”數24的齦

⑶2,3,5,74,6,8,9,10(4)5357.(1)”和工法固數(2)

32以內3和5的公信數

作業2:

一、1.九2.1000099999899993.304505000米3.04505億米3

億米4?十二億九千五百三十三萬人12.9533億人135.66.35

7.85208.+126~1509.49240210.75

二、1.X2.X3.X4.V5.V6.X

三、>><><=

四、1.C2.C3.CB4.C

五、奇數:1,25,37,417,23偶數:20,14,64,104,398質數:37,23合

數:20,14,25,64,104,417,398

六、1.最小的質數是2,2=1+1或2=2+0,所以百位上是1或2,個位上是1

或0,所以這個三位數是101或200o2.6天

舊板書設計

整數

考點1整數的意義

例1

考點2十進制計數法和計數單位

例2

考點3整數的讀寫和比較大小

例3例4例5

考點4倍數與因數

例6例7

舊教學反思

G成功之處

對小學階段學習的整數的相關知識進行全面、系統的整理是本節課的

教學重點,也是難點。通過“回顧一一整理一一總結一一應用”的教學策

略,幫助學生進一步掌握了小學階段所學的與整數相關的知識。這種教學

設計,層次清晰,目標明確,學生復習起來有明確的方向,也為復習的過程

節省了時間。面對與整數有關的眾多知識點,注意引導學生自主進行梳理,

既回憶起了與整數相關的知識,又調動了學生的思維,使學生頭腦中零亂

的知識點逐漸構建成系統的整數知識網絡。

e1不足之處

由于小學階段所學的與整數相關的知識太多,教材中只復習了其中的

一部分,教學中雖然拓展了一些,但不可能面面俱到,可能還有學生沒有掌

握的知識點。

(①再教設計

再教時,要適當減少例題,把有些重復的例題放到“鞏固練習”中,這

樣能節省時間,可以復習更多的知識點。

o教材習題解答

【鞏固與應用-66頁】

1.130104082.填表略9926.37萬>5066.8萬>2454.82萬>2308.51

萬>2205.33萬>164.58萬3.(1)表中第1列填

-1180,-60,+2800,-150,-350,+200,-430,-2680第2列填

3000,1820,1760,4560,4410,4060,4260,3830,1150o(2)結余1150元。

4.約120只,把螞蟻平均分成6份,每份20只,20X6=120(只)。5.(1)

千萬943010萬(2)1000099991000

(3)2,3,5,74,6,8,9,10(4)5356.(1)52,72

57,75,27,7225,75(2)75(3)752257

18.四數24的因里

7.(1)18和24%公因數

?蠡假

(2)32以內3和5的公倍數

第③]課時小數、分數、百分數

區L整體設寸

(6教學目標

1.復習整理小數、分數、百分數的意義等,會用多種方式解釋分數,

進一步梳理整數、小數的數位順序表及相關知識,進一步理解十進制計數

法。

2.進一步理解小數、分數、百分數之間的關系,理清分數與除法、商

不變性質與分數基本性質之間的關系,完善知識網絡。

Q教學重難點

【重點】復習整理小數、分數和百分數的知識,構建完整的知識體

系。

【難點】理解小數和分數在十進制計數法上的聯系。

Q)課前準備

【教師準備】PPT課件。

【學生準備】搜集生活中一些小數、分數、百分數的事例。

舊教學過程

反考點講解

考點1分數的意義

師:同學們,上一節課,我們復習了“數與代數”中的整數的知識。本

節課我們將復習“數與代數”中“小數、分數、百分數”部分的相關內容。

(板書課題:小數、分數、百分數)

[設計意圖]用簡單的語言,開門見山地告訴學生本節課學習的內容,

讓學生對所整理與復習的知識有一個大概了解。

師:自然數產生于社會生活實際需要,分數的產生是不是也是這樣呢?

什么是分數單位?

預設生:把單位“1”平均分成若干份,表示這樣的一份或幾份的數叫

作分數;其中的一份叫作分數單位。

師:你能用哪些方法解釋分數:的含義呢?

(提示學生嘗試用分數的意義、畫圖、除法的意義等多種方式去解釋)

(PPT課件出示教材第68頁問題1情景圖第1幅)

師:請同學們說一說,上圖是怎么解釋“9的含義的?

4

預設生:是通過生活中分東西的實例解釋的。“產表示把3個蘋果

4

平均分成4份,取其中的一份。

(PPT課件出示教材第68頁問題1情景圖第2幅)

預設生:用畫圖的方法解釋“廿的含義。表示把一個圓平均分成4

份,取其中的3份……

(PPT課件出示教材第68頁問題1情景圖第3幅)

3-r4=--

師:用3+4能解釋"廿的含義嗎?

4

預設生:噌”相當于把3平均分成4份,因此可以用除法表示。

4

(PPT課件出示教材第68頁問題1情景圖第4幅)

師:用這幅圖也可以解釋“廿的含義嗎?

4

預設生:可以把4m長的綠彩帶看成單位“1”,3m長的紅彩帶的長

度相當于綠彩帶的“I”。

[設計意圖]讓學生用多種方式解釋分數的含義,使學生進一步從多

角度體會分數的意義之后,把分數、除法等知識自然地聯系起來,調動了學

生的已經知識經驗,深化了學生對分數的理解。

例1用分數表示圖形中陰影部分占整個圖形的幾分之幾。

(1)

陰影占

白色占

陰影占

白色占

[解答](1)||(2)||

55oo

【鞏固練習】

把4米長的繩子平均分成5段,每段占全長的(),每段長()

米。

【參考答案】|1或0.8

(PPT課件出示知識總結)

i.分數的定義,把單位r”平均分成若干份.

表示這樣的一份或幾份的數叫作分數,表示箕中

一份的數是這個分數的分數單位.

2.分數的分類:

,?其分數:分子比分母小的數.

廣致(限分數:分子大于或等于分母的分數.

3.分數的基本性質:分數的分子和分母同時

我或者除以相同的數(0除外),分數的大小不變.

4.分數大小的比較£

女分數、鍛分數或整數部分是相同的數的帶

分數:(1)分母相同的分數,分子大的分數比較大.

(2)分子相同的分數.分母小的分數比較大.

(3)分子和分母都不相同的分數,先化成分母

相同的分數或分子相同的分數,再比粒大小.

考點2“小數、分數、百分數”之間的關系

師:我們學過哪幾種小數?分數也能像小數那樣進行分類嗎?學過哪幾

種分數?

預設生1:有限小數和無限小數,無限小數分無限循環小數和無限不

循環小數。

(PPT課件展示)

無限循環小數是指一個無眼小數?如果從小

教鄴分的某一位起,都是由一個或幾個數字依照

一定的順序連續不斷地近復出現的.這樣的小數

叫作無限循環小數.簡稱“循環小數二

無限不循環小數是指一個小數的數位無限

多.而且小數部分各數位上的數字是不循環的?這

樣的小數叫作無限不循環小數.在小學數學中.

■周率(八3.M15926……便是一個無限不循環

小數.

生2:分數也能進行分類,比如真分數、假分數和帶分數。

師:小數、分數和百分數之間有什么關系?

(生交流、思考)

(PPT課件出示小數、分數和百分數之間的關系)

小數實際上是十進制分數,分數可以表示兩

種含義:后面帶計量旗位的我示一個具體的量.不

帶計量單位的可以表示兩個量的倍數關系:百分

數只表示一個收是另一個址的百分之幾,不能帶

計及單位.

師:分數與除法之間有什么關系?

預設生:除法中的被除數相當于分數的分子,除數相當于分數的分母,

除號相當于分數線。

師:分數與除法之間有什么區別?

預設生:除法是一種運算,而分數既可以表示具體的數量,又可以表

示兩個量之間的倍數關系。

師:分數的基本性質是什么?

預設生:分數的分子和分母同時乘或除以一個相同的數(0除外),分

數的值不變。

師:什么是“商不變的規律”?

預設生:被除數和除數同時乘或除以一個相同的數(0除外),商不變。

師:(強調)因為分數的分子相當于除法里的被除數,分母相當于除數,

所以商不變的規律和分數的基本性質其本質是相同的。

[設計意圖]讓學生結合具體的例子解釋小數、分數和百分數之間的

關系,分數、除法之間的關系,商不變的規律和分數基本性質的關系,加深

學生對這些知識的理解。

例2

⑵將近成小數和百分數。

8

(3)將75%化成小數和分數。

[解答](1)0.2=^=1=20%

(2)-=54-8=0.625=62.5%

(3)75%=0.75=—=^

1004

(PPT課件總結小數、分數、百分數的互化)

考點3數位和計數單位(分數和小數部分)

(PPT課件出示教材第68頁問題3表格)

師:通過填寫表格,我們要把分數的計數單位與小數的計數單位聯系

起來,一位小數,表示十分之兒,計數單位是0.1或總。

師:舉例說一說,整數與小數相鄰計數單位之間的進率都是多少?

預設生:都是十,例如小數點后的十分位和百分位之間的進率是十。

[設計意圖]通過復習數位與計數單位,讓學生再次體會數位順序表

的擴充過程,明白小數與整數相鄰計數單位之間的進率都是10,從而進一

步體會十進制計數法。

例3由3個干,1個十,6個一,7個十分之一組成的數是(),

讀作()o

[解答]3016.7三千零一~H六點七

里隨堂練習

1.完成教材第69頁“鞏固與應用”第1題。

(1)學生自由讀題,理解題意。

(2)指名回答,你從資料中了解到了什么?

(3)指名解釋資料中數據的具體意義。

2.完成教材第69頁“鞏固與應用”第2題。

匯報自己課前收集的資料,可引導學生做成手抄報匯報。

【參考答案】略

場課堂小結

師:這節課我們有什么收獲?

預設生1:我們進一步掌握了小數、分數和百分數的意義以及它們之

間的關系。

生2:再次體會到了分數與除法之間的聯系。

生3:懂得了整數和小數相鄰計數單位之間的進率都是10o

區作業設計

作業1

教材第69頁“鞏固與應用”第3,4題。

作業2

一、想一想,填一填

1.2|的分數單位是(),它含有()個這樣的分數單位。

2.;kg表示把()平均分成()份,取其中的()份;也可以表示

4

把3kg平均分成()份,取其中的()份。

3.10個0.001是(),100個0.01是(),1000個10是()0

4.把一根4米長的木棒鋸成同樣長的小段,六次鋸完,每小段占全長的

(),每段長()。

5.在50%,0.56,0.5,0.55,這幾個數中,最大的數是(),其次是

(),()和()的大小相等。

6.7^-y=()4-60=0.4=-^=()%。

7.不改變小數的大小,把0.725改寫成一個五位小數是(),把7.1400

改寫成一個三位小數是()。

8.把3.5改寫成用“千分之一”作單位的數是(),把3.4567億改寫成

用“萬”作單位的數是(),改寫成用“一”作單位的數是()。

二、我是聰明的小法官

1.0.50元和0.5元的價值相等,計數單位不相等。()

2.在小數的小數點后面添上0或者去掉0,小數的大小不變。()

3.在一次測驗中,及格的學生占全班人數的靠不及格的學生就占全班人

數的總()

4.1千克糖果,吃了一半,還剩50%千克糖果。()

5.一根木料平均鋸成4段,共用1分鐘,每鋸一次用;分鐘。()

6.把一壺水倒入3個杯子,每個杯中的水是1壺水的(()

三、選一選

1.下面各數中,()不能寫成自然數。

A.3.0B.—C.0D.-

509

2.7.57中百分位上的“7”是個位上“7”的()。

3.下面各數比較大小,其中正確的是()。

A.-1<1-B.—2=0.222

4513

C.->—D.->-

91733

4.把3.5米長的電線平均分成7段,每段是全長的(),每段長()。

A.工米B,C一米D.-

7722

5.大于:而小于]的分數有()0

A.1個B2個C0個D.無數個

6.六年級⑴班某日出勤50人,2人請假,這天的出勤率約是()。

A.50%B.100%C.96.2%D.80%

7.甲、乙兩數都是正數且甲數的g與乙數的,相等,則甲數()乙數。

A.大于B.等于C.小于

8.把35%的“%”去掉,原數()o

A.擴大到原來的100倍

B.縮小到原來的

C.大小不變

9.將1.34的小數點先向右移動兩位,再向左移動一位,這個數()。

A.擴大到原來的100倍

B.縮小到原來的二

C擴大到原來的10倍

D.縮小到原來的2

10.不改變2.8的值,把它改成以千分之一為單位的數是()。

A.0.028B.2.800

C.0.280

四、在。里填上">"或

100%01.003.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論