




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省榆林市榆陽區二中2025屆高三第四次適應性訓練數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.己知全集為實數集R,集合A={x|x2+2x-8>0},B={x|log2x<1},則等于()A.[4,2] B.[4,2) C.(4,2) D.(0,2)2.要得到函數的圖象,只需將函數的圖象()A.向右平移個單位 B.向右平移個單位C.向左平移個單位 D.向左平移個單位3.設等比數列的前項和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要4.將函數圖象向右平移個單位長度后,得到函數的圖象關于直線對稱,則函數在上的值域是()A. B. C. D.5.已知雙曲線的左、右焦點分別為,圓與雙曲線在第一象限內的交點為M,若.則該雙曲線的離心率為A.2 B.3 C. D.6.若,,則的值為()A. B. C. D.7.甲、乙、丙、丁四人通過抓鬮的方式選出一人周末值班(抓到“值”字的人值班).抓完鬮后,甲說:“我沒抓到.”乙說:“丙抓到了.”丙說:“丁抓到了”丁說:“我沒抓到."已知他們四人中只有一人說了真話,根據他們的說法,可以斷定值班的人是()A.甲 B.乙 C.丙 D.丁8.復數(i為虛數單位)的共軛復數是A.1+i B.1?i C.?1+i D.?1?i9.在中,是的中點,,點在上且滿足,則等于()A. B. C. D.10.設過點的直線分別與軸的正半軸和軸的正半軸交于兩點,點與點關于軸對稱,為坐標原點,若,且,則點的軌跡方程是()A. B.C. D.11.某學校為了調查學生在課外讀物方面的支出情況,抽取了一個容量為的樣本,其頻率分布直方圖如圖所示,其中支出在(單位:元)的同學有34人,則的值為()A.100 B.1000 C.90 D.9012.函數的圖象可能為()A. B.C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知全集,,則________.14.設第一象限內的點(x,y)滿足約束條件,若目標函數z=ax+by(a>0,b>0)的最大值為40,則+的最小值為_____.15.已知平面向量、的夾角為,且,則的最大值是_____.16.若奇函數滿足,為R上的單調函數,對任意實數都有,當時,,則________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知拋物線C:x24py(p為大于2的質數)的焦點為F,過點F且斜率為k(k0)的直線交C于A,B兩點,線段AB的垂直平分線交y軸于點E,拋物線C在點A,B處的切線相交于點G.記四邊形AEBG的面積為S.(1)求點G的軌跡方程;(2)當點G的橫坐標為整數時,S是否為整數?若是,請求出所有滿足條件的S的值;若不是,請說明理由.18.(12分)在平面直角坐標系中,以為極點,軸的正半軸為極軸,建立極坐標系,曲線的極坐標方程為;直線的參數方程為(為參數),直線與曲線分別交于兩點.(1)寫出曲線的直角坐標方程和直線的普通方程;(2)若點的極坐標為,,求的值.19.(12分)正項數列的前n項和Sn滿足:(1)求數列的通項公式;(2)令,數列{bn}的前n項和為Tn,證明:對于任意的n∈N*,都有Tn<.20.(12分)已知函數為實數)的圖像在點處的切線方程為.(1)求實數的值及函數的單調區間;(2)設函數,證明時,.21.(12分)已知函數.(1)求不等式的解集;(2)若不等式在上恒成立,求實數的取值范圍.22.(10分)已知函數,.(Ⅰ)判斷函數在區間上零點的個數,并證明;(Ⅱ)函數在區間上的極值點從小到大分別為,,證明:
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
求解一元二次不等式化簡A,求解對數不等式化簡B,然后利用補集與交集的運算得答案.【詳解】解:由x2+2x-8>0,得x<-4或x>2,
∴A={x|x2+2x-8>0}={x|x<-4或x>2},
由log2x<1,x>0,得0<x<2,
∴B={x|log2x<1}={x|0<x<2},
則,
∴.
故選:D.【點睛】本題考查了交、并、補集的混合運算,考查了對數不等式,二次不等式的求法,是基礎題.2.D【解析】
直接根據三角函數的圖象平移規則得出正確的結論即可;【詳解】解:函數,要得到函數的圖象,只需將函數的圖象向左平移個單位.故選:D.【點睛】本題考查三角函數圖象平移的應用問題,屬于基礎題.3.A【解析】
首先根據等比數列分別求出滿足,的基本量,根據基本量的范圍即可確定答案.【詳解】為等比數列,若成立,有,因為恒成立,故可以推出且,若成立,當時,有,當時,有,因為恒成立,所以有,故可以推出,,所以“”是“”的充分不必要條件.故選:A.【點睛】本題主要考查了等比數列基本量的求解,充分必要條件的集合關系,屬于基礎題.4.D【解析】
由題意利用函數的圖象變換規律,三角函數的圖象的對稱性,余弦函數的值域,求得結果.【詳解】解:把函數圖象向右平移個單位長度后,可得的圖象;再根據得到函數的圖象關于直線對稱,,,,函數.在上,,,故,即的值域是,故選:D.【點睛】本題主要考查函數的圖象變換規律,三角函數的圖象的對稱性,余弦函數的值域,屬于中檔題.5.D【解析】
本題首先可以通過題意畫出圖像并過點作垂線交于點,然后通過圓與雙曲線的相關性質判斷出三角形的形狀并求出高的長度,的長度即點縱坐標,然后將點縱坐標帶入圓的方程即可得出點坐標,最后將點坐標帶入雙曲線方程即可得出結果。【詳解】根據題意可畫出以上圖像,過點作垂線并交于點,因為,在雙曲線上,所以根據雙曲線性質可知,,即,,因為圓的半徑為,是圓的半徑,所以,因為,,,,所以,三角形是直角三角形,因為,所以,,即點縱坐標為,將點縱坐標帶入圓的方程中可得,解得,,將點坐標帶入雙曲線中可得,化簡得,,,,故選D。【點睛】本題考查了圓錐曲線的相關性質,主要考察了圓與雙曲線的相關性質,考查了圓與雙曲線的綜合應用,考查了數形結合思想,體現了綜合性,提高了學生的邏輯思維能力,是難題。6.A【解析】
取,得到,取,則,計算得到答案.【詳解】取,得到;取,則.故.故選:.【點睛】本題考查了二項式定理的應用,取和是解題的關鍵.7.A【解析】
可采用假設法進行討論推理,即可得到結論.【詳解】由題意,假設甲:我沒有抓到是真的,乙:丙抓到了,則丙:丁抓到了是假的,丁:我沒有抓到就是真的,與他們四人中只有一個人抓到是矛盾的;假設甲:我沒有抓到是假的,那么丁:我沒有抓到就是真的,乙:丙抓到了,丙:丁抓到了是假的,成立,所以可以斷定值班人是甲.故選:A.【點睛】本題主要考查了合情推理及其應用,其中解答中合理采用假設法進行討論推理是解答的關鍵,著重考查了推理與分析判斷能力,屬于基礎題.8.B【解析】分析:化簡已知復數z,由共軛復數的定義可得.詳解:化簡可得z=∴z的共軛復數為1﹣i.故選B.點睛:本題考查復數的代數形式的運算,涉及共軛復數,屬基礎題.9.B【解析】
由M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足可得:P是三角形ABC的重心,根據重心的性質,即可求解.【詳解】解:∵M是BC的中點,知AM是BC邊上的中線,又由點P在AM上且滿足∴P是三角形ABC的重心∴又∵AM=1∴∴故選B.【點睛】判斷P點是否是三角形的重心有如下幾種辦法:①定義:三條中線的交點.②性質:或取得最小值③坐標法:P點坐標是三個頂點坐標的平均數.10.A【解析】
設坐標,根據向量坐標運算表示出,從而可利用表示出;由坐標運算表示出,代入整理可得所求的軌跡方程.【詳解】設,,其中,,即關于軸對稱故選:【點睛】本題考查動點軌跡方程的求解,涉及到平面向量的坐標運算、數量積運算;關鍵是利用動點坐標表示出變量,根據平面向量數量積的坐標運算可整理得軌跡方程.11.A【解析】
利用頻率分布直方圖得到支出在的同學的頻率,再結合支出在(單位:元)的同學有34人,即得解【詳解】由題意,支出在(單位:元)的同學有34人由頻率分布直方圖可知,支出在的同學的頻率為.故選:A【點睛】本題考查了頻率分布直方圖的應用,考查了學生概念理解,數據處理,數學運算的能力,屬于基礎題.12.C【解析】
先根據是奇函數,排除A,B,再取特殊值驗證求解.【詳解】因為,所以是奇函數,故排除A,B,又,故選:C【點睛】本題主要考查函數的圖象,還考查了理解辨析的能力,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
利用集合的補集運算即可求解.【詳解】由全集,,所以.故答案為:【點睛】本題考查了集合的補集運算,需理解補集的概念,屬于基礎題.14.【解析】不等式表示的平面區域陰影部分,當直線ax+by=z(a>0,b>0)過直線x?y+2=0與直線2x?y?6=0的交點(8,10)時,目標函數z=ax+by(a>0,b>0)取得最大40,即8a+10b=40,即4a+5b=20,而當且僅當時取等號,則的最小值為.15.【解析】
建立平面直角坐標系,設,可得,進而可得出,,由此將轉化為以為自變量的三角函數,利用三角恒等變換思想以及正弦函數的有界性可得出結果.【詳解】根據題意建立平面直角坐標系如圖所示,設,,以、為鄰邊作平行四邊形,則,設,則,,且,在中,由正弦定理,得,即,在中,由正弦定理,得,即.,,則,當時,取最大值.故答案為:.【點睛】本題考查了向量的數量積最值的計算,將問題轉化為角的三角函數的最值問題是解答的關鍵,考查計算能力,屬于難題.16.【解析】
根據可得,函數是以為周期的函數,令,可求,從而可得,代入解析式即可求解.【詳解】令,則,由,則,所以,解得,所以,由時,,所以時,;由,所以,所以函數是以為周期的函數,,又函數為奇函數,所以.故答案為:【點睛】本題主要考查了換元法求函數解析式、函數的奇偶性、周期性的應用,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(2)當G點橫坐標為整數時,S不是整數.【解析】
(1)先求解導數,得出切線方程,聯立方程得出交點G的軌跡方程;(2)先求解弦長,再分別求解點到直線的距離,表示出四邊形的面積,結合點G的橫坐標為整數進行判斷.【詳解】(1)設,則,拋物線C的方程可化為,則,所以曲線C在點A處的切線方程為,在點B處的切線方程為,因為兩切線均過點G,所以,所以A,B兩點均在直線上,所以直線AB的方程為,又因為直線AB過點F(0,p),所以,即G點軌跡方程為;(2)設點G(,),由(1)可知,直線AB的方程為,即,將直線AB的方程與拋物線聯立,,整理得,所以,,解得,因為直線AB的斜率,所以,且,線段AB的中點為M,所以直線EM的方程為:,所以E點坐標為(0,),直線AB的方程整理得,則G到AB的距離,則E到AB的距離,所以,設,因為p是質數,且為整數,所以或,當時,,是無理數,不符題意,當時,,因為當時,,即是無理數,所以不符題意,當時,是無理數,不符題意,綜上,當G點橫坐標為整數時,S不是整數.【點睛】本題主要考查直線與拋物線的位置關系,拋物線中的切線問題通常借助導數來求解,四邊形的面積問題一般轉化為三角形的面積和問題,表示出面積的表達式是求解的關鍵,側重考查數學運算的核心素養.18.(1)曲線的直角坐標方程為即,直線的普通方程為;(2).【解析】
(1)利用代入法消去參數方程中的參數,可得直線的普通方程,極坐標方程兩邊同乘以利用即可得曲線的直角坐標方程;(2)直線的參數方程代入圓的直角坐標方程,根據直線參數方程的幾何意義,利用韋達定理可得結果.【詳解】(1)由,得,所以曲線的直角坐標方程為,即,直線的普通方程為.(2)將直線的參數方程代入并化簡、整理,得.因為直線與曲線交于,兩點.所以,解得.由根與系數的關系,得,.因為點的直角坐標為,在直線上.所以,解得,此時滿足.且,故..【點睛】參數方程主要通過代入法或者已知恒等式(如等三角恒等式)消去參數化為普通方程,通過選取相應的參數可以把普通方程化為參數方程,利用關系式,等可以把極坐標方程與直角坐標方程互化,這類問題一般我們可以先把曲線方程化為直角坐標方程,用直角坐標方程解決相應問題.19.(1)(2)見解析【解析】
(1)因為數列的前項和滿足:,所以當時,,即解得或,因為數列都是正項,所以,因為,所以,解得或,因為數列都是正項,所以,當時,有,所以,解得,當時,,符合所以數列的通項公式,;(2)因為,所以,所以數列的前項和為:,當時,有,所以,所以對于任意,數列的前項和.20.(1);函數的單調遞減區間為,單調遞增區間為;(2)詳見解析.【解析】
試題分析:(1)由題得,根據曲線在點處的切線方程,列出方程組,求得的值,得到的解析式,即可求解函數的單調區間;(2)由(1)得根據由,整理得,設,轉化為函數的最值,即可作出證明.試題解析:(1)由題得,函數的定義域為,,因為曲線在點處的切線方程為,所以解得.令,得,當時,,在區間內單調遞減;當時,,在區間內單調遞增.所以函數的單調遞減區間為,單調遞增區間為.(2)由(1)得,.由,得,即.要證,需證,即證,設,則要證,等價于證:.令,則,∴在區間內單調遞增,,即,故.21.(1);
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 貨架買賣合同協議書
- 文檔媒介公關技巧講座
- 2025年高純氮化鋁粉體項目合作計劃書
- 2025年特種大型鋁合金型材項目發展計劃
- 2025年分級設備地礦勘測設備:鉆探機項目建議書
- 中醫操作護理質控體系構建
- 兒童保健口腔護理
- 跨國公司股權證書及員工持股計劃交接協議
- 高標準廢舊電池回收處理項目委托經營協議書
- 影視劇主題歌版權授權及版權保護協議
- 租賃電瓶合同范文
- 空氣能合同模板
- 智能家居系統設計方案四篇
- 2025年醫院院感知識培訓計劃
- 伊犁將軍府課件
- 中醫護理不良事件
- 2023版設備管理體系標準
- 《城市公園配套設施設計導則》
- 安徽省江南十校2023-2024學年高二下學期5月階段聯考化學A試題
- 第六單元 資本主義制度的初步確立 復習課件 2024-2025學年統編版九年級歷史上冊
- 弘揚偉大長征精神-走好今天的長征路課件
評論
0/150
提交評論