2025屆浙江省越崎中學高三下-第三次階段考試(1月)數學試題試卷_第1頁
2025屆浙江省越崎中學高三下-第三次階段考試(1月)數學試題試卷_第2頁
2025屆浙江省越崎中學高三下-第三次階段考試(1月)數學試題試卷_第3頁
2025屆浙江省越崎中學高三下-第三次階段考試(1月)數學試題試卷_第4頁
2025屆浙江省越崎中學高三下-第三次階段考試(1月)數學試題試卷_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆浙江省越崎中學高三下-第三次階段考試(1月)數學試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數的圖象為C,以下結論中正確的是()①圖象C關于直線對稱;②圖象C關于點對稱;③由y=2sin2x的圖象向右平移個單位長度可以得到圖象C.A.① B.①② C.②③ D.①②③2.若將函數的圖象上各點橫坐標縮短到原來的(縱坐標不變)得到函數的圖象,則下列說法正確的是()A.函數在上單調遞增 B.函數的周期是C.函數的圖象關于點對稱 D.函數在上最大值是13.集合,,則()A. B. C. D.4.“是函數在區間內單調遞增”的()A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件5.元代數學家朱世杰的數學名著《算術啟蒙》是中國古代代數學的通論,其中關于“松竹并生”的問題:松長五尺,竹長兩尺,松日自半,竹日自倍,松竹何日而長等.下圖是源于其思想的一個程序圖,若,,則輸出的()A.3 B.4 C.5 D.66.已知雙曲線:的左右焦點分別為,,為雙曲線上一點,為雙曲線C漸近線上一點,,均位于第一象限,且,,則雙曲線的離心率為()A. B. C. D.7.函數()的圖象的大致形狀是()A. B. C. D.8.下列函數中,既是偶函數又在區間上單調遞增的是()A. B. C. D.9.函數f(x)=lnA. B. C. D.10.設為非零實數,且,則()A. B. C. D.11.已知雙曲線的左、右焦點分別為,圓與雙曲線在第一象限內的交點為M,若.則該雙曲線的離心率為A.2 B.3 C. D.12.如圖,正方形網格紙中的實線圖形是一個多面體的三視圖,則該多面體各表面所在平面互相垂直的有()A.2對 B.3對C.4對 D.5對二、填空題:本題共4小題,每小題5分,共20分。13.如圖,已知,,為的中點,為以為直徑的圓上一動點,則的最小值是_____.14.若實數,滿足不等式組,則的最小值為______.15.已知函數,若恒成立,則的取值范圍是___________.16.已知函數為偶函數,則_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數.(1)求不等式的解集;(2)若不等式在上恒成立,求實數的取值范圍.18.(12分)如圖,在三棱錐A-BCD中,AB⊥AD,BC⊥BD,平面ABD⊥平面BCD,點E,F(E與A,D不重合)分別在棱AD,BD上,且EF⊥AD.求證:(1)EF∥平面ABC;(2)AD⊥AC.19.(12分)已知函數.(1)證明:函數在上存在唯一的零點;(2)若函數在區間上的最小值為1,求的值.20.(12分)已知圓外有一點,過點作直線.(1)當直線與圓相切時,求直線的方程;(2)當直線的傾斜角為時,求直線被圓所截得的弦長.21.(12分)在平面直角坐標系中,曲線,曲線的參數方程為(為參數).以坐標原點為極點,軸的正半軸為極軸建立極坐標系.(1)求曲線、的極坐標方程;(2)在極坐標系中,射線與曲線,分別交于、兩點(異于極點),定點,求的面積22.(10分)已知函數,.(1)當時,①求函數在點處的切線方程;②比較與的大小;(2)當時,若對時,,且有唯一零點,證明:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】

根據三角函數的對稱軸、對稱中心和圖象變換的知識,判斷出正確的結論.【詳解】因為,又,所以①正確.,所以②正確.將的圖象向右平移個單位長度,得,所以③錯誤.所以①②正確,③錯誤.故選:B【點睛】本小題主要考查三角函數的對稱軸、對稱中心,考查三角函數圖象變換,屬于基礎題.2.A【解析】

根據三角函數伸縮變換特點可得到解析式;利用整體對應的方式可判斷出在上單調遞增,正確;關于點對稱,錯誤;根據正弦型函數最小正周期的求解可知錯誤;根據正弦型函數在區間內值域的求解可判斷出最大值無法取得,錯誤.【詳解】將橫坐標縮短到原來的得:當時,在上單調遞增在上單調遞增,正確;的最小正周期為:不是的周期,錯誤;當時,,關于點對稱,錯誤;當時,此時沒有最大值,錯誤.本題正確選項:【點睛】本題考查正弦型函數的性質,涉及到三角函數的伸縮變換、正弦型函數周期性、單調性和對稱性、正弦型函數在一段區間內的值域的求解;關鍵是能夠靈活應用整體對應的方式,通過正弦函數的圖象來判斷出所求函數的性質.3.A【解析】

計算,再計算交集得到答案.【詳解】,,故.故選:.【點睛】本題考查了交集運算,屬于簡單題.4.C【解析】,令解得當,的圖像如下圖當,的圖像如下圖由上兩圖可知,是充要條件【考點定位】考查充分條件和必要條件的概念,以及函數圖像的畫法.5.B【解析】分析:根據流程圖中的可知,每次循環的值應是一個等比數列,公比為;根據流程圖中的可知,每次循環的值應是一個等比數列,公比為,根據每次循環得到的的值的大小決定循環的次數即可.詳解:記執行第次循環時,的值記為有,則有;記執行第次循環時,的值記為有,則有.令,則有,故,故選B.點睛:本題為算法中的循環結構和數列通項的綜合,屬于中檔題,解題時注意流程圖中蘊含的數列關系(比如相鄰項滿足等比數列、等差數列的定義,是否是求數列的前和、前項積等).6.D【解析】由雙曲線的方程的左右焦點分別為,為雙曲線上的一點,為雙曲線的漸近線上的一點,且都位于第一象限,且,可知為的三等分點,且,點在直線上,并且,則,,設,則,解得,即,代入雙曲線的方程可得,解得,故選D.點睛:本題考查了雙曲線的幾何性質,離心率的求法,考查了轉化思想以及運算能力,雙曲線的離心率是雙曲線最重要的幾何性質,求雙曲線的離心率(或離心率的取值范圍),常見有兩種方法:①求出,代入公式;②只需要根據一個條件得到關于的齊次式,轉化為的齊次式,然后轉化為關于的方程(不等式),解方程(不等式),即可得(的取值范圍).7.C【解析】

對x分類討論,去掉絕對值,即可作出圖象.【詳解】故選C.【點睛】識圖常用的方法(1)定性分析法:通過對問題進行定性的分析,從而得出圖象的上升(或下降)的趨勢,利用這一特征分析解決問題;(2)定量計算法:通過定量的計算來分析解決問題;(3)函數模型法:由所提供的圖象特征,聯想相關函數模型,利用這一函數模型來分析解決問題.8.C【解析】

結合基本初等函數的奇偶性及單調性,結合各選項進行判斷即可.【詳解】A:為非奇非偶函數,不符合題意;B:在上不單調,不符合題意;C:為偶函數,且在上單調遞增,符合題意;D:為非奇非偶函數,不符合題意.故選:C.【點睛】本小題主要考查函數的單調性和奇偶性,屬于基礎題.9.C【解析】因為fx=lnx2-4x+4x-23=10.C【解析】

取,計算知錯誤,根據不等式性質知正確,得到答案.【詳解】,故,,故正確;取,計算知錯誤;故選:.【點睛】本題考查了不等式性質,意在考查學生對于不等式性質的靈活運用.11.D【解析】

本題首先可以通過題意畫出圖像并過點作垂線交于點,然后通過圓與雙曲線的相關性質判斷出三角形的形狀并求出高的長度,的長度即點縱坐標,然后將點縱坐標帶入圓的方程即可得出點坐標,最后將點坐標帶入雙曲線方程即可得出結果。【詳解】根據題意可畫出以上圖像,過點作垂線并交于點,因為,在雙曲線上,所以根據雙曲線性質可知,,即,,因為圓的半徑為,是圓的半徑,所以,因為,,,,所以,三角形是直角三角形,因為,所以,,即點縱坐標為,將點縱坐標帶入圓的方程中可得,解得,,將點坐標帶入雙曲線中可得,化簡得,,,,故選D。【點睛】本題考查了圓錐曲線的相關性質,主要考察了圓與雙曲線的相關性質,考查了圓與雙曲線的綜合應用,考查了數形結合思想,體現了綜合性,提高了學生的邏輯思維能力,是難題。12.C【解析】

畫出該幾何體的直觀圖,易證平面平面,平面平面,平面平面,平面平面,從而可選出答案.【詳解】該幾何體是一個四棱錐,直觀圖如下圖所示,易知平面平面,作PO⊥AD于O,則有PO⊥平面ABCD,PO⊥CD,又AD⊥CD,所以,CD⊥平面PAD,所以平面平面,同理可證:平面平面,由三視圖可知:PO=AO=OD,所以,AP⊥PD,又AP⊥CD,所以,AP⊥平面PCD,所以,平面平面,所以該多面體各表面所在平面互相垂直的有4對.【點睛】本題考查了空間幾何體的三視圖,考查了四棱錐的結構特征,考查了面面垂直的證明,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

建立合適的直角坐標系,求出相關點的坐標,進而可得的坐標表示,利用平面向量數量積的坐標表示求出的表達式,求出其最小值即可.【詳解】建立直角坐標系如圖所示:則點,,,設點,所以,由平面向量數量積的坐標表示可得,,其中,因為,所以的最小值為.故答案為:【點睛】本題考查平面向量數量積的坐標表示和利用輔助角公式求最值;考查數形結合思想和轉化與化歸能力、運算求解能力;建立直角坐標系,把表示為關于角的三角函數,利用輔助角公式求最值是求解本題的關鍵;屬于中檔題.14.5【解析】

根據題意,畫出圖像,數形結合,將目標轉化為求動直線縱截距的最值,即可求解【詳解】畫出不等式組,表示的平面區域如圖陰影區域所示,令,則.分析知,當,時,取得最小值,且.【點睛】本題考查線性規劃問題,屬于基礎題15.【解析】

求導得到,討論和兩種情況,計算時,函數在上單調遞減,故,不符合,排除,得到答案。【詳解】因為,所以,因為,所以.當,即時,,則在上單調遞增,從而,故符合題意;當,即時,因為在上單調遞增,且,所以存在唯一的,使得.令,得,則在上單調遞減,從而,故不符合題意.綜上,的取值范圍是.故答案為:.【點睛】本題考查了不等式恒成立問題,轉化為函數的最值問題是解題的關鍵.16.【解析】

根據偶函數的定義列方程,化簡求得的值.【詳解】由于為偶函數,所以,即,即,即,即,即,即,即,所以.故答案為:【點睛】本小題主要考查根據函數的奇偶性求參數,考查運算求解能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】

(1)分類討論去絕對值號,即可求解;(2)原不等式可轉化為在R上恒成立,分別求函數與的最小值,根據能同時成立,可得的最小值,即可求解.【詳解】(1)①當時,不等式可化為,得,無解;②當-2≤x≤1時,不等式可化為得x>0,故0<x≤1;③當x>1時,不等式可化為,得x<2,故1<x<2.綜上,不等式的解集為(2)由題意知在R上恒成立,所以令,則當時,又當時,取得最小值,且又所以當時,與同時取得最小值.所以所以,即實數的取值范圍為【點睛】本題主要考查了含絕對值不等式的解法,分類討論,函數的最值,屬于中檔題.18.(1)見解析(2)見解析【解析】試題分析:(1)先由平面幾何知識證明,再由線面平行判定定理得結論;(2)先由面面垂直性質定理得平面,則,再由AB⊥AD及線面垂直判定定理得AD⊥平面ABC,即可得AD⊥AC.試題解析:證明:(1)在平面內,因為AB⊥AD,,所以.又因為平面ABC,平面ABC,所以EF∥平面ABC.(2)因為平面ABD⊥平面BCD,平面平面BCD=BD,平面BCD,,所以平面.因為平面,所以.又AB⊥AD,,平面ABC,平面ABC,所以AD⊥平面ABC,又因為AC平面ABC,所以AD⊥AC.點睛:垂直、平行關系證明中應用轉化與化歸思想的常見類型:(1)證明線面、面面平行,需轉化為證明線線平行;(2)證明線面垂直,需轉化為證明線線垂直;(3)證明線線垂直,需轉化為證明線面垂直.19.(1)證明見解析;(2)【解析】

(1)求解出導函數,分析導函數的單調性,再結合零點的存在性定理說明在上存在唯一的零點即可;(2)根據導函數零點,判斷出的單調性,從而可確定,利用以及的單調性,可確定出之間的關系,從而的值可求.【詳解】(1)證明:∵,∴.∵在區間上單調遞增,在區間上單調遞減,∴函數在上單調遞增.又,令,,則在上單調遞減,,故.令,則所以函數在上存在唯一的零點.(2)解:由(1)可知存在唯一的,使得,即(*).函數在上單調遞增.∴當時,,單調遞減;當時,,單調遞增.∴.由(*)式得.∴,顯然是方程的解.又∵是單調遞減函數,方程有且僅有唯一的解,把代入(*)式,得,∴,即所求實數的值為.【點睛】本題考查函數與導數的綜合應用,其中涉及到判斷函數在給定區間上的零點個數以及根據函數的最值求解參數,難度較難.(1)判斷函數的零點個數時,可結合函數的單調性以及零點的存在性定理進行判斷;(2)函數的“隱零點”問題,可通過“設而不求”的思想進行分析.20.(1)或(2).【解析】

(1)根據題意分斜率不存在和斜率存在兩種情況即可求得結果;(2)先求出直線方程,然后求得圓心與直線的距離,由弦長公式即可得出答案.【詳解】解:(1)由題意可得,直線與圓相切當斜率不存在時,直線的方程為,滿足題意當斜率存在時,設直線的方程為,即∴,解得∴直線的方程為∴直線的方程為或(2)當直線的傾斜角為時,直線的方程為圓心到直線的距離為∴弦長為【點睛】本題考查了直線的方程、直線與圓的位置關系、點到直線的距離公式及弦長公式,培養了學生分析問題與解決問題的能力.21.(1),;(2).【解析】

(1)先把參數方程化成普通

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論