




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
上海市浦東實驗2025屆第一次聯合考試數學試題試卷考生須知:1.全卷分選擇題和非選擇題兩部分,全部在答題紙上作答。選擇題必須用2B鉛筆填涂;非選擇題的答案必須用黑色字跡的鋼筆或答字筆寫在“答題紙”相應位置上。2.請用黑色字跡的鋼筆或答字筆在“答題紙”上先填寫姓名和準考證號。3.保持卡面清潔,不要折疊,不要弄破、弄皺,在草稿紙、試題卷上答題無效。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.下列函數中,值域為的偶函數是()A. B. C. D.2.以下四個命題:①兩個隨機變量的線性相關性越強,相關系數的絕對值越接近1;②在回歸分析中,可用相關指數的值判斷擬合效果,越小,模型的擬合效果越好;③若數據的方差為1,則的方差為4;④已知一組具有線性相關關系的數據,其線性回歸方程,則“滿足線性回歸方程”是“,”的充要條件;其中真命題的個數為()A.4 B.3 C.2 D.13.已知是橢圓和雙曲線的公共焦點,是它們的-一個公共點,且,設橢圓和雙曲線的離心率分別為,則的關系為()A. B.C. D.4.“”是“”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件5.設正項等差數列的前項和為,且滿足,則的最小值為A.8 B.16 C.24 D.366.函數,,的部分圖象如圖所示,則函數表達式為()A. B.C. D.7.已知函數若恒成立,則實數的取值范圍是()A. B. C. D.8.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.9.若非零實數、滿足,則下列式子一定正確的是()A. B.C. D.10.我國數學家陳景潤在哥德巴赫猜想的研究中取得了世界領先的成果,哥德巴赫猜想的內容是:每個大于2的偶數都可以表示為兩個素數的和,例如:,,,那么在不超過18的素數中隨機選取兩個不同的數,其和等于16的概率為()A. B. C. D.11.若,,,則()A. B.C. D.12.設函數,則函數的圖像可能為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.設(其中為自然對數的底數),,若函數恰有4個不同的零點,則實數的取值范圍為________.14.將含有甲、乙、丙的6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發宣傳資料,則甲、乙至少一人參加指揮交通且甲、丙不在同一個組的概率為__________.15.已知集合,,則__________.16.設變量,,滿足約束條件,則目標函數的最小值是______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,E,F分別是棱AB,PC的中點.求證:(1)EF//平面PAD;(2)平面PCE⊥平面PCD.18.(12分)已知橢圓:的左、右焦點分別為,,焦距為2,且經過點,斜率為的直線經過點,與橢圓交于,兩點.(1)求橢圓的方程;(2)在軸上是否存在點,使得以,為鄰邊的平行四邊形是菱形?如果存在,求出的取值范圍,如果不存在,請說明理由.19.(12分)在中,.(Ⅰ)求角的大??;(Ⅱ)若,,求的值.20.(12分)已知橢圓:(),點是的左頂點,點為上一點,離心率.(1)求橢圓的方程;(2)設過點的直線與的另一個交點為(異于點),是否存在直線,使得以為直徑的圓經過點,若存在,求出直線的方程;若不存在,說明理由.21.(12分)2019年安慶市在大力推進城市環境、人文精神建設的過程中,居民生活垃圾分類逐漸形成意識.有關部門為宣傳垃圾分類知識,面向該市市民進行了一次“垃圾分類知識"的網絡問卷調查,每位市民僅有一次參與機會,通過抽樣,得到參與問卷調查中的1000人的得分數據,其頻率分布直方圖如圖:(1)由頻率分布直方圖可以認為,此次問卷調查的得分Z服從正態分布,近似為這1000人得分的平均值(同一組數據用該區間的中點值作代表),利用該正態分布,求P();(2)在(1)的條件下,有關部門為此次參加問卷調查的市民制定如下獎勵方案:(i)得分不低于可獲贈2次隨機話費,得分低于則只有1次:(ii)每次贈送的隨機話費和對應概率如下:贈送話費(單位:元)1020概率現有一位市民要參加此次問卷調查,記X(單位:元)為該市民參加問卷調查獲贈的話費,求X的分布列.附:,若,則,.22.(10分)如圖,過點且平行與x軸的直線交橢圓于A、B兩點,且.(1)求橢圓的標準方程;(2)過點M且斜率為正的直線交橢圓于段C、D,直線AC、BD分別交直線于點E、F,求證:是定值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】試題分析:A中,函數為偶函數,但,不滿足條件;B中,函數為奇函數,不滿足條件;C中,函數為偶函數且,滿足條件;D中,函數為偶函數,但,不滿足條件,故選C.考點:1、函數的奇偶性;2、函數的值域.2、C【解析】
①根據線性相關性與r的關系進行判斷,
②根據相關指數的值的性質進行判斷,
③根據方差關系進行判斷,
④根據點滿足回歸直線方程,但點不一定就是這一組數據的中心點,而回歸直線必過樣本中心點,可進行判斷.【詳解】①若兩個隨機變量的線性相關性越強,則相關系數r的絕對值越接近于1,故①正確;
②用相關指數的值判斷模型的擬合效果,越大,模型的擬合效果越好,故②錯誤;
③若統計數據的方差為1,則的方差為,故③正確;
④因為點滿足回歸直線方程,但點不一定就是這一組數據的中心點,即,不一定成立,而回歸直線必過樣本中心點,所以當,時,點必滿足線性回歸方程;因此“滿足線性回歸方程”是“,”必要不充分條件.故④錯誤;
所以正確的命題有①③.
故選:C.【點睛】本題考查兩個隨機變量的相關性,擬合性檢驗,兩個線性相關的變量間的方差的關系,以及兩個變量的線性回歸方程,注意理解每一個量的定義,屬于基礎題.3、A【解析】
設橢圓的半長軸長為,雙曲線的半長軸長為,根據橢圓和雙曲線的定義得:,解得,然后在中,由余弦定理得:,化簡求解.【詳解】設橢圓的長半軸長為,雙曲線的長半軸長為,由橢圓和雙曲線的定義得:,解得,設,在中,由余弦定理得:,化簡得,即.故選:A【點睛】本題主要考查橢圓,雙曲線的定義和性質以及余弦定理的應用,還考查了運算求解的能力,屬于中檔題.4、B【解析】
或,從而明確充分性與必要性.【詳解】,由可得:或,即能推出,但推不出∴“”是“”的必要不充分條件故選【點睛】本題考查充分性與必要性,簡單三角方程的解法,屬于基礎題.5、B【解析】
方法一:由題意得,根據等差數列的性質,得成等差數列,設,則,,則,當且僅當時等號成立,從而的最小值為16,故選B.方法二:設正項等差數列的公差為d,由等差數列的前項和公式及,化簡可得,即,則,當且僅當,即時等號成立,從而的最小值為16,故選B.6、A【解析】
根據圖像的最值求出,由周期求出,可得,再代入特殊點求出,化簡即得所求.【詳解】由圖像知,,,解得,因為函數過點,所以,,即,解得,因為,所以,.故選:A【點睛】本題考查根據圖像求正弦型函數的解析式,三角函數誘導公式,屬于基礎題.7、D【解析】
由恒成立,等價于的圖像在的圖像的上方,然后作出兩個函數的圖像,利用數形結合的方法求解答案.【詳解】因為由恒成立,分別作出及的圖象,由圖知,當時,不符合題意,只須考慮的情形,當與圖象相切于時,由導數幾何意義,此時,故.故選:D【點睛】此題考查的是函數中恒成立問題,利用了數形結合的思想,屬于難題.8、A【解析】
由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點睛】本題主要考查了平面向量基本定理的應用,其中解答熟記平面向量的基本定理,化簡得到是解答的關鍵,著重考查了運算與求解能力,數基礎題.9、C【解析】
令,則,,將指數式化成對數式得、后,然后取絕對值作差比較可得.【詳解】令,則,,,,,因此,.故選:C.【點睛】本題考查了利用作差法比較大小,同時也考查了指數式與對數式的轉化,考查推理能力,屬于中等題.10、B【解析】
先求出從不超過18的素數中隨機選取兩個不同的數的所有可能結果,然后再求出其和等于16的結果,根據等可能事件的概率公式可求.【詳解】解:不超過18的素數有2,3,5,7,11,13,17共7個,從中隨機選取兩個不同的數共有,其和等于16的結果,共2種等可能的結果,故概率.故選:B.【點睛】古典概型要求能夠列舉出所有事件和發生事件的個數,本題不可以列舉出所有事件但可以用分步計數得到,屬于基礎題.11、C【解析】
利用指數函數和對數函數的單調性比較、、三個數與和的大小關系,進而可得出、、三個數的大小關系.【詳解】對數函數為上的增函數,則,即;指數函數為上的增函數,則;指數函數為上的減函數,則.綜上所述,.故選:C.【點睛】本題考查指數冪與對數式的大小比較,一般利用指數函數和對數函數的單調性結合中間值法來比較,考查推理能力,屬于基礎題.12、B【解析】
根據函數為偶函數排除,再計算排除得到答案.【詳解】定義域為:,函數為偶函數,排除,排除故選【點睛】本題考查了函數圖像,通過函數的單調性,奇偶性,特殊值排除選項是常用的技巧.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
求函數,研究函數的單調性和極值,作出函數的圖象,設,若函數恰有4個零點,則等價為函數有兩個零點,滿足或,利用一元二次函數根的分布進行求解即可.【詳解】當時,,由得:,解得,由得:,解得,即當時,函數取得極大值,同時也是最大值,(e),當,,當,,作出函數的圖象如圖,設,由圖象知,當或,方程有一個根,當或時,方程有2個根,當時,方程有3個根,則,等價為,當時,,若函數恰有4個零點,則等價為函數有兩個零點,滿足或,則,即(1)解得:,故答案為:【點睛】本題主要考查函數與方程的應用,利用換元法進行轉化一元二次函數根的分布以及.求的導數,研究函數的的單調性和極值是解決本題的關鍵,屬于難題.14、【解析】
先求出總的基本事件數,再求出甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件數,然后根據古典概型求解.【詳解】6人平均分成兩組參加“文明交通”志愿者活動,其中一組指揮交通,一組分發宣傳資料的基本事件總數共有個,甲、乙至少一人參加指揮交通且甲、丙不在同一組的基本事件個數有:個,所以甲、乙至少一人參加指揮交通且甲、丙不在同一組的概率為.故答案為:【點睛】本題主要考查概率的求法,考查古典概型、排列組合等基礎知識,考查運算求解能力,是中檔題.15、【解析】
直接根據集合和集合求交集即可.【詳解】解:,,所以.故答案為:【點睛】本題考查集合的交集運算,是基礎題.16、7【解析】作出不等式組表示的平面區域,得到如圖的△ABC及其內部,其中A(2,1),B(1,2),C(4,5)設z=F(x,y)=2x+3y,將直線l:z=2x+3y進行平移,當l經過點A時,目標函數z達到最小值∴z最小值=F(2,1)=7三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)見解析【解析】
(1)取的中點構造平行四邊形,得到,從而證出平面;(2)先證平面,再利用面面垂直的判定定理得到平面平面.【詳解】證明:(1)如圖,取的中點,連接,,是棱的中點,底面是矩形,,且,又,分別是棱,的中點,,且,,且,四邊形為平行四邊形,,又平面,平面,平面;(2),點是棱的中點,,又,,平面,平面,,底面是矩形,,平面,平面,且,平面,又平面,,,,又平面,平面,且,平面,又平面,平面平面.【點睛】本題主要考查線面平行的判定,面面垂直的判定,首選判定定理,是中檔題.18、(1)(2)存在;實數的取值范圍是【解析】
(1)根據橢圓定義計算,再根據,,的關系計算即可得出橢圓方程;(2)設直線方程為,與橢圓方程聯立方程組,求出的范圍,根據根與系數的關系求出的中點坐標,求出的中垂線與軸的交點橫,得出關于的函數,利用基本不等式得出的范圍.【詳解】(1)由題意可知,,.又,,,橢圓的方程為:.(2)若存在點,使得以,為鄰邊的平行四邊形是菱形,則為線段的中垂線與軸的交點.設直線的方程為:,,,,,聯立方程組,消元得:,△,又,故.由根與系數的關系可得,設的中點為,,則,,線段的中垂線方程為:,令可得,即.,故,當且僅當即時取等號,,且.的取值范圍是,.【點睛】本題主要考查了橢圓的性質,考查直線與橢圓的位置關系,意在考查學生對這些知識的理解掌握水平和分析推理能力.19、(1);(2).【解析】試題分析:(1)由正弦定理得到.消去公因式得到所以.進而得到角A;(2)結合三角形的面積公式,和余弦定理得到,聯立兩式得到.解析:(I)因為,所以,由正弦定理,得.又因為,,所以.又因為,所以.(II)由,得,由余弦定理,得,即,因為,解得.因為,所以.20、(1);(2)存在,【解析】
(1)把點代入橢圓C的方程,再結合離心率,可得a,b,c的關系,可得橢圓的方程;(2)設出直線的方程,代入橢圓,運用韋達定理可求得點的坐標,再由,可求得直線的方程,要注意檢驗直線是否和橢圓有兩個交點.【詳解】(1)由題可得∴,所以橢圓的方程(2)由題知,設,直線的斜率存在設為,則與橢圓聯立得,,∴,,∴若以為直徑的圓經過點,則,∴,化簡得,∴,解得或因為與不重合,所以舍.所以直線的方程為.【點睛
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2024年農藝師考試的考試環境與心理準備 領域試題及答案
- 農藝師備考階段劃分試題及答案
- 2025至2030年微型牙鉆項目投資價值分析報告
- 2024年福建事業單位考試系統學習試題及答案
- 高校輔導員招聘知識點精析試題
- 2024年農藝師考試復習指南試題及答案
- 2025至2030年開孔鋸項目投資價值分析報告
- 農作物輪作的益處試題及答案
- 2025至2030年工業液晶一體化工作站項目投資價值分析報告
- 2025至2030年小太陽不粘油雙爐項目投資價值分析報告
- 2025資陽輔警考試題庫
- 第一篇 專題三 計算題培優3 帶電粒子在交變場和立體空間中的運動-2025高考物理二輪復習
- 學校保潔方案
- 血液透析患者心力衰竭的護理
- 江蘇省2021-2022學年二年級下學期數學期中備考卷一(南京專版)
- TCI 535-2024 鋁合金液態模鍛模具技術條件
- 胰島素泵護理管理規范
- 9.1.1 西亞 第1課時 課件 七年級地理下冊 人教版
- 校外培訓機構預收費資金托管協議書范本
- 2025山東能源集團中級人才庫選拔高頻重點模擬試卷提升(共500題附帶答案詳解)
- 《餐廳托盤的使用技》課件
評論
0/150
提交評論