




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
BISWorkingPapersNo1251
Consumerfinancialdataandnon-horizontalmergers
byLindaJeng,JonFrost,ElisabethNobleandChrisBrummer
MonetaryandEconomicDepartment
March2025
JELclassification:E21,G34,K21,L41,O32
Keywords:antitrust,bigdata,bigtech,competition,data,financialdata,financialservices,mergers,openbanking,opendata,openfinance,payments,personaldata,privacy
BISWorkingPapersarewrittenbymembersoftheMonetaryandEconomicDepartmentoftheBankforInternationalSettlements,andfromtimetotimebyothereconomists,andarepublishedbytheBank.Thepapersareonsubjectsoftopicalinterestandaretechnicalincharacter.TheviewsexpressedinthemarethoseoftheirauthorsandnotnecessarilytheviewsoftheBIS.
ThispublicationisavailableontheBISwebsite
()
.
?BankforInternationalSettlements2025.Allrightsreserved.Briefexcerptsmaybereproducedortranslatedprovidedthesourceisstated.
ISSN1020-0959(print)
ISSN1682-7678(online)
1
ConsumerFinancialDataandNon-HorizontalMergers
March2025
0F
Authors:LindaJeng,JonFrost,ElisabethNobleandChrisBrummer1
Abstract
Thisarticleexploresthepotentialcompetitiveimplicationsofnon-horizontalmergerswheretheyinvolveextensiveconsumerdata,includingconsumerfinancialdata.Asdatabecomeincreasinglycentraltofirmstrategy,mergersbetweendata-richfirms,whilepotentiallyleadingtopositiveoutcomes,canalsocreatemarketpowerinwaysnotentirelyaccountedforbytraditionalantitrusttheory.Thearticleconsiderssomeoftheseimplications.Itintroducesnewmetricsforvaluingdatasetsheldbymergingfirmsthatcouldhelpcompetitionauthoritiesevaluatemarketimpactsmoreeffectively.Thearticlethensuggestspotentialtoolstomitigateanti-competitiveeffectsofdata-richmergers.Itadvocatesforfurtherresearchtoadaptcompetitionpolicytodata-centricmergers,allwithaviewtomaintainingopen,innovativeandcompetitivemarketsinthedigitalanddataeconomy.
Keywords:antitrust,competition,bigdata,verticalmergers,non-horizontalmergers,bigtech,datasharing,dataconcentration,dataaggregation,financialservices,dataprivacy,consumerfinancialdata,openbanking,opendata,openfinance,personaldata,economicsofdata
1TheviewsexpressedherearethoseoftheauthorsanddonotnecessarilyreflectthoseoftheBankforInternationalSettlements(BIS),EuropeanBankingAuthority(EBA),oranyotheraffiliatedinstitution.Examplesfromindividualfirmsareusedforillustrationandshouldnotbeconstruedasaformallegalopinionaboutthesespecificcases.TheauthorswishtothankCarolinaAbate,OscarBorgogno,RossBuckley,PabloIbá?ezColomo,ScottFarrell,VikramHaksar,DarylLim,PhilippPaech,NoahPhillips,MatteoMannino,LauraVeldkamp,participantsofresearchseminarsattheBISandtheUKFinancialConductAuthority(FCA),andananonymousreviewerfortheirinvaluablefeedback.WethankGeorgeSakkopoulosforresearchassistanceandeditorialsupport,GiulioCornelli,CeciliaFrancoandHaiweiCaofordatasupport,andKarlaPatriciaRamirezSanchezandAlessiaTortatoforeditorialsupport.
Thispaperisadraft.AfinalversionisforthcomingintheFordhamJournalofCorporate&FinancialLaw.
2
I.Introduction:EconomicsofDataandMergersinthePaymentsSector
Mergersareamongthemostconsequentialeconomictransactionsinthefinancialmarketplace.Theyallowfirmstodiversifyandspreadriskacrossdifferentrevenuestreamsortostrengthentheirpositionsinspecificmarkets.Theyalsoprovideanalternativeforfirmsseekingtoscaleormovedirectlyintonewindustrysegmentsandmarketswheretheyhavelittlepriorexpertiseorresources.
1F
2F
3F
Globally,mergerandacquisition(M&A)dealssetarecordin2021with62,590transactions,passing$5trillionUSDintotaldealvalue(breakingthe2007recordof$4.2trillion).2In2022,totaldealvaluefellto$3.63trillion—muchlowerthanthepreviousyear,butstillsurpassingthe2017($3.44trillion)and2020($3.42trillion)totals.3(2023sawafurtherdeclineasglobalM&Adealvolumesfailedtobreakthe$3trillionmarkforthefirsttimeinadecade).4
4F
5F
Mergersfallintotwomaincategories:(1)horizontaland(2)non-horizontal.5Horizontalmergersinvolvetwocompetingfirmsthatproduceandsellthesameproductsandaregenerallypresumedtoreducecompetition.Non-horizontalmergers,meanwhile,involvefirmsthatoperateatdifferentpointsalongthesupplychainorincomplementarysectors.6
6F
Becausenon-horizontalmergersdonotdirectlyreducecompetitioninthesamemarket,theyhavetraditionallyreceivedlessscrutiny.7However,thisischangingasaccesstodata
2NiketNishant&NiketNishant,GlobalM&AVolumesHitRecordHighin2021,Breach$5TrillionforFirstTime,REUTERS,Dec.31,2021,
/markets/us/global-ma-volumes-hit-record
-high-2021-breach-5-trillion-first-time-2021-12-31/.
3Id.
4EmilyRouleau,ANALYSIS:DespiteQ4Boost,2023M&ADealVolumesDisappoint,BLOOMBERG,Jan.9,2024,
/bloomberg-law-analysis/analysis-despite-q4-boost-2023-m-a-deal
-volumes-disappoint
5OECD,OECDGLOSSARYOFSTATISTICALTERMS(2008),
/en/publications/oecd
-glossary-of-statistical-terms_9789264055087-en.html.Non-horizontalmergersareacatch-allcategorythatcoversmergerswithelementsofverticalintegration,conglomerateeffects,orboth,andmayalsocontainelementsofhorizontalintegration.Non-horizontalmergersandtheoriesofharmarediscussedinacontextparticularlyrelevantforthispaperintheOECD2023,TheoriesofHarmforDigitalMergers,293(2023),
/daf/competition/theories-of-harm-for-digital-mergers-2023.pdf.Foradefinitionofvertical
andconglomeratemergers
(togetherreferredtoas“non-horizontalmergers”),seeCommissionCommunicationGuidelinesontheassessmentofnon-horizontalmergersundertheCouncilRegulationonthecontrolofconcentrationsbetweenundertakings,2008O.J.C265/6,paras.4–5,
https://eur
-lex.europa.eu/legal-content/EN/TXT/?uri=CELEX%3A52008XC1018%2803%29.
6OECDGlossary,supranote5.
7StevenC.Salop,InvigoratingVerticalMergerEnforcement,127YaleL.J.1962(2018),andseegenerally,U.S.DEP’TOFJUSTICE,MergerGuidelines§4.0(1984)(“Althoughnonhorizontalmergersarelesslikelythanhorizontalmergerstocreatecompetitiveproblems,theyarenotinvariablyinnocuous.”).
3
7F
andtechnologicalcapabilitiesareshowntoincreasinglyimpactcompetitionacrossthedigitalanddataeconomy.8
8F
Businessmodelshaveevolvedtoharnessdatatocustomizethemarketinganddistributionofproductsandservicestoconsumers.9Andmanylargemergingfirmscollect(orhaveaccessto)vastamountsofdataontheircustomersaspartoftheirrespectivebusinessmodels.Moreover,manyseektoacquiredata-richfirmssuchasdataaggregators,withaviewtodeepeningorexpandingconsumerdatapoolsacrosssectorsandsegments,leadingtomorenon-horizontalmergers.
Togetasenseastotheriseofdata-drivennon-horizontalmergers,itisinstructivetoconsiderpaymentssectormergertransactionsoverthelastdecade(Graph1).Duringthisperiod,thelargestmergers(bypurchaseprice)havebeenhorizontal(i.e.,dealsinwhichadirectcompetitorisacquiredinthesamemarket)(bluedots).Yetnon-horizontalmergers(reddots)increasedsignificantlyinfrequency,size,aswellasvalueoftheacquirer.Moreover,non-horizontalmergersincludedtheverylargestacquirers(dotsize).Wethusseethatthereisanuptickinnon-horizontalmergersbetweenpaymentandnon-paymentfirms.
8UNITEDNATIONSCONFERENCEONTRADEANDDEVELOPMENT,AssessmentofDominanceorSignificantMarketPower,U.N.Doc.UNCTAD/DITC/CPLP/54(2021),
/system/files/official
-document/ciclpd54_en.pdf
9Indeed,suchisthemarketpowerthatcanbederivedfromdataaccessthat,insomejurisdictions,policymeasureshavebeenpromulgatedtomandate,withtheexpressconsentofconsumers,theflowofcertaintypesofdatafromtheoriginalholdertoapotentialcompetitor.‘Openbanking’initiativesareonesuchexample,tofacilitatetheflowofpaymentaccountsandotherdatafrombankstothirdpartyfirms–typicallyfinancialtechnologyfirms(fintechs).Theaimisoftentoreduceswitchingcostsandenhancecompetition.SeeBASELCOMMITTEEONBANKINGSUPERVISION,SoundPractices:Implicationsoffintechdevelopmentsforbanksandbanksupervisors(BankforInternationalSettlements,Feb.2018),
/bcbs/publ/d431.pdfandPaulAdams
,StefanHunt,ChristopherPalmerandRedisZaliauskas,Testingtheeffectivenessofconsumerfinancialdisclosure:Experimentalevidencefromsavingsaccounts,141J.FIN.ECON.1(2021).
Graph1.MergerTransactionsinthePaymentsSectorHaveProliferated
4
PurchasepriceinmillionsofUSdollars,logarithmicscale
Dataupto30May2024.
EachdotrepresentsamergertransactionbyAntFinancial,FidelityNationalInformationServices(FIS),FISERV,GlobalPayments,Mastercard,PayPal,Block(formerlySquare)orVisaascollectedbyPitchBookandRefinitivEikon.Thisexcludesdivestituresandintra-firmoperations.
Mergertransactionsareclassifiedas“non-horizontal”whentheacquiringfirmandthetargetfirmoperateatdifferentstagesalongthesamepaymentchain,asdeterminedbyfirmreports.In“horizontal”mergers,theacquiringandtargetfirmsaredirectcompetitorsinatleastonekeybusinessline.
Theheightofdotsreferstothepurchaseprice,andthesizeofdotstothevalueoftheacquiringfirm.Thesizeofeachdotisproportionaltotheacquiringfirm’smarketcapitalizationonthedayofthedealor,inthecaseofAntFinancial,thevaluationofAntFinancialasofend-2018,multipliedbychangesinthemarketcapitalizationofAlibabaHoldingsrelativetoend-2018.Sources:BIS;PitchBookData,Inc.;RefinitivEikon;authors’elaboration.
9F
10F
Importantly,non-horizontalmergersinthepaymentssectorarenotinherentlyproblematic.Insomeinstances,theycandriveefficiency,innovation,andevenbetterconsumerservices.10Forexample,insomecircumstancesmergersmightallowfirmstoofferfinancialservicesinwaysthatarebetterintegrated,andwhichofferseamlessuserexperienceandlowercosts.Thisisespeciallythecasewheremergerscombinecomplementarycapabilities,suchaspaymentprocessinganddataanalytics.Meanwhile,inothercases,mergersmightheightenfinancialinclusionbyenablingfirmstoleveragemorediversedatasourcestounderstandandserveclientshailingfromtraditionallyexcludedsegmentsofthepopulation.11
Butnon-horizontalmergers(whetherinthepaymentssectororotherwise)maynotalwayscontributepositivelytosocietyormarkets—andinsomecases,theycancauseanti-
10SeeMergerGuidelines,supranote7,§4.0.
11SeeBASELCOMMITTEEONBANKINGSUPERVISION,supranote9,andKarenCroxson,JonFrost,LeonardoGambacorta&TommasoValletti,Platform-BasedBusinessModelsandFinancialInclusion:PolicyTrade-OffsandApproaches,19J.COMPETITIONL.&ECON75(2023).
5
11F
competitiveeffects.Aswediscussinmoredetailbelow,mergersenablehighlytargetedmarketing,pricediscrimination,andpredictiveanalyticsthatrivalswithoutaccesstosimilardatacannotmatch.Consumerdatacangrantauniquecompetitiveadvantagethatcanleadtoanti-competitiveoutcomes,asthemergedentitymightpreventotherfirmsfromaccessingnecessarydata,limitinginnovationandraisingbarriersformarketentry.12
12F
13F
Regulatorsarealreadyanticipatingthesechallengesbydirectingregulatoryrulemakingtowardsunlockingdataportabilityandpromotingopenbanking.13Inmanyjurisdictions,competitionandfinancialregulatoryauthoritiesviewedtheage-oldbankpracticeofkeepingcustomerdatatothemselvesasahindranceagainstcompetition.14Toincreasecompetitioninthebankingsector,manyjurisdictionsnowrequirebankstosharecustomerdatawithexternalpartieswhenthecustomerhasgivenpermission.However,inthispaper,welookmorebroadlytoconsiderthepotentialcompetitiveeffectsofdataaccessviamergersandofferpotentialmetricstoenhancehowtheseeffectscanbeassessedandmitigated.
Thepaperisorganizedasfollows.PartIIexaminesthewaysinwhichdataaggregationinfluencesmarketpower,highlightinghowaccesstoconsumerdatacanenhance
12SeeOECDGlossary,supranote5.
13SeegenerallyOPENBANKING(LindaJenged.,2022).TheEuropeanUnion(andtheUnitedKingdom,aformerMemberStateoftheEU)haveimplementedtheRevisedPaymentServicesDirective(PSD2)whichaimstoincreasecompetitioninthepaymentssectorandimproveconsumerprotectionby,amongotherthings,establishinganewframeworktofacilitateaccesstopaymentaccountsdata.SeeEU’sDirective2015/2366oftheEuropeanParliamentandoftheCouncilof25November2015onPaymentServicesintheInternalMarket,2015O.J.(L337)35andtheUK’sPaymentServicesRegulations2017,SI2017/752(UK).IntheEU,anewlegislativeproposaltofacilitatethesharingofcertainothertypesoffinancialdata(ProposalforaRegulationoftheEuropeanParliamentandoftheCouncilonaframeworkforFinancialDataAccessandamendingRegulations(EU)No1093/2010,(EU)No1094/2010,(EU)No1095/2010and(EU)2022/2554COM/2023/360final(FIDA))wasannouncedbytheEuropeanCommissioninJune2023.TheUnitedStatesrecentlyjoinedtheranksofjurisdictionsrequiringdata-sharingbybanks.OnOctober22,2024,theConsumerFinancialProtectionBureaufinalizeditsPersonalFinancialDataRightsRule.SeeConsumerFinancialProtectionBureau,FinalRule,RequiredRulemakingonPersonalFinancialDataRights,89Fed.Reg.90838(Nov.18,2024)(tobecodifiedat12C.F.R.pts.1001,1033),andthePressRelease,ConsumerFin.Prot.Bureau,CFPBFinalizesPersonalFinancialDataRightsRuletoBoostCompetition,ProtectPrivacy,andGiveFamiliesMoreChoiceinFinancialServices(Oct.22,2024),
/about
-us/newsroom/cfpb-finalizes-personal-financial-data-rights-rule-to-boost-competition-protect-privacy-and-give-families-more-choice-in-financial-services/.
14Forinstance,in2016theUnitedKingdomCompetitionandMarketsAuthority(CMA)publishedamarketinvestigationreportentitledRetailBankingmarketinvestigation:Finalreport,whichconcluded,amongothers,thatinordertoaddressadverseeffectsoncompetitionwithinthelendingindustryinGreatBritainandNorthernIrelandanintegratedpackageofremediesshouldbeimposedinwhichasetofmeasurestargetedatenhancingsmall-mediumenterprisesaccesstoinformationwouldbeprovided.SeeCOMPETITION&MARKETSAUTHORITY,RetailBankingMarketInvestigation:FinalReport(Aug.9,2016)
.uk/media/57ac9667e5274a0f6c00007a/retail-banking-market
-
investigation-full-final-report.pdfandCMA,TheRetailBankingMarketInvestigationOrder2017(Feb.2,2017),
.uk/media/5893063bed915d06e1000000/retail-banking-market
-investigation-order-2017.pdf.
6
competitivepositioningthroughpersonalizedofferings,pricediscriminationandinnovation.PartIIIprovidesexamplesofcurrentapproachestotheassessmentofdata-drivenmergersanddata-basedtheoriesofharmbycitingmergersreviewedbycompetitionauthoritiesintheUnitedStates(US)andEuropeanUnion(EU).PartIVproposesnewmetricstoassistregulatorsbetterassesswhethermergeddatasetscouldleadtoanti-competitivepracticesandconsumerharm,andhighlightsmeasuresofdatacomplementarity,populationcoverage,andconsumeroverlap.PartVthenconcludesbyofferingrecommendationsforfutureresearchandpolicydevelopment.
II.PotentialImpactofDataAccessonCompetition
14F
15F
Tounderstandhowdata-drivenmergerspotentiallyreshapecompetition,itiscrucialtoexaminetheuniqueeconomicfeaturesofdata.Inthispart,wesummarizethesefeaturesandexploreseveralwaysinwhichdatacanimpactcompetitionconsiderations.Unliketraditionalassets,dataarenon-rival.Inotherwords,aslongasthedataremainvalid,theycanbereusedandrecombinedwithoutlosingvalue.15Thisflexibility,combinedwithadvancementsindataanalyticsandartificialintelligence(AI),enablesfirmstoextractnew,valuableinsightsthatcandrivemarketadvantage.Recognizingtheseeconomicfeaturesofdataexplainswhydataaresuchapowerfulassetandwhytheroleofdatainnon-horizontalmergerswarrantsgreaterscrutiny.16
a.EconomicFeaturesofData
16F
Dataareacriticaleconomicinput.Theyenablefirmstoderiveinsightsintomarketdynamics,optimizeoperations,andinnovate.Theircentralitystemsfromtheirparticularqualitativefeatures,alongsidethetechnologicaladvancementsthathavemadethemincreasinglyaccessibleandvaluable.17Amongthem,overrecentdecades,theavailabilityofdatahasexplodedastheproductoftechnologicaltrends.First,thecostsofcollectingandstoringdata,facilitatingthedigitizationofeverydayeconomicandsocialactivities
15CharlesI.Jones&ChristopherTonetti,NonrivalryandtheEconomicsofData,110Am.Econ.Rev.2819
(2020).Ofcourse,thenotionthatdataarenon-rivalhadbeendiscussedpreviously.Foroneexample,seeHalVarian,ArtificialIntelligence,Economics,andIndustrialOrganization,inAjayK.Agrawal,JoshuaGans,andAviGoldfarb(eds),TheEconomicsofArtificialIntelligence:AnAgenda,UniversityofChicagoPress(2018).
16Foradiscussionofhowfirmsusedataintoday’seconomiestocreatevalueandcompete,seeDirectorate-GeneralforCompetition,EC,ProtectingCompetitioninaChangingWorld—EvidenceontheEvolutionofCompetitionintheEUDuringthePast25Years:COMP.PA01—Ex-PostEconomicEvaluationofCompetitionPolicy,(Jul.1,2024),
https://op.europa.eu/en/publication-detail/-/publication/c03374f1-3833-
11ef-b441-01aa75ed71a1.
17Foranoverview,seegenerally,JosephE.Stiglitz,InformationandtheChangeintheParadigminEconomics,92AM.ECON.REV.460(2002).SeealsoYanCarriere-Swallow&VikramHaksar,TheEconomicsandImplicationsofData:AnIntegratedPerspective(InternationalMonetaryFundDepartmentalPaperNo.2019/013,Sept.2019),
/en/Publications/Departmental-Papers-Policy
-Papers/Issues/2019/09/20/The-Economics-and-Implications-of-Data-An-Integrated-Perspective-48596.
7
17F
18F
19F
havefallensignificantlyastechnologymoregenerallyhasadvanced.18Second,advancesinartificialintelligenceandmachinelearning(AI/ML)aremakingiteasiertoquicklyprocesslargeamountsofdatatoextractgreatervalue.19Thesetechnologicaladvancementshavedrivenmanyofthemostvaluablepublicly-tradedfirmstoincludedatacollectionandprocessingaskeycomponentsoftheirhighlyprofitablebusinessmodels.20
20F
21F
Theeconomicfeaturesofdatafurtheramplifytheirvalue.Non-rivalrydistinguishesdatafromtraditionalinputslikelabor,capital,ornaturalresources,whichareinherentlyrival.21Moreover,dataareinherentlydecomposableandpossessrecombinantproperties:theycanbecombinedwithotherdatasetstocreateentirelynewdatasetswithdifferenteconomicvalue,offeringunparalleledopportunitiesforinnovation.22
22F
23F
24F
25F
Thereisextensiveliteratureontheeconomicsofinformationandtheimportanceofinformationaccessincompetition.23Thesharingofinformation(orlackthereof)determineswhichpartieshaveaccesstoinformationandwhichdonot.24Theseinformationasymmetriescanprovidemarketadvantages.Thus,reducinginformationasymmetriescanleadtogreatercompetitionandmarketefficiency.25Moreover,theeconomicvalueofdatacangrow.Thiseconomicvalueisderivedfromtwoprimaryeconomicfunctionsofdata–asinputsintotheproductionofagoodorserviceandasinformationshiftersacrosseconomicagents.26
18MaryamFarboodi,RoxanaMihet,ThomasPhilippon&LauraVeldkamp,BigDataandFirmDynamics(Jan.14,2019)(unpublishedmanuscript),
/sol3/papers.cfm?abstract_id=3334064
.Theyauthorsemphasizethatmarginalcostsofdatacollectionareverylowwheredataaregeneratedasabyproductofeconomicactivity.
19SeegenerallyAjayAgrawal,JoshuaGans&AviGoldfarb,PREDICTIONMACHINES:THESIMPLEECONOMICSOFARTIFICIALINTELLIGENCE(2018).ForaconsiderationofAIinmergers,seeDirectorate-GeneralforCompetition,EC,CompetitioningenerativeAIandvirtualworlds(KlausKowalski,CristinaVolpin&ZsoltZomborieds.,Sept.23,2024),
https://op.europa.eu/en/publication-detail/-
/publication/5530c8ca-7a1f-11ef-bbbe-01aa75ed71a1/language-en.
20IntheirOctober2020quarterlyreportfiledwiththeU.S.SecuritiesandExchangeCommission,Alphabet(theparentfirmforGoogleInc.)reportedadvertisingrevenuesof$37.1billion—generatedbythefirm’sdata-drivenadtargetingservices—makingupabout80%oftotalrevenues.SeePressRelease,Alphabet,Inc.,AlphabetAnnouncesSecondQuarter2020Results(July30,2021),
/Archives/edgar/data/1652044/000165204420000031/googexhibit991q22020.htm
.
21Jones&Tonetti,supranote15.
22Carriere-Swallow&Haksar,supranote17.
23Seegenerally,Stiglitz,supranote17andCarriere-Swallow&Haksar,supranote17.
24Datasharingcanbeparticularlycomplexinthecaseofplatformsthatmatchtwodistinctgroupsofcustomersinso-calledtwo-sidedmarkets.Here,informationfromonesideofthemarket(e.g.,users)maybequiterelevanttotheotherside(e.g.,merchants).SeeJean-CharlesRochet&JeanTirole,Two-SidedMarkets:AProgressReport,37RANDJ.ECON.645(2006).
25JulianeBegenau,MaryamFarboodi&LauraVeldkamp,BigDatainFinanceandtheGrowthofLargeFirms,97J.MONETARYECON.71(2018)andseealsoRochet&Tirole,supranote24.
26Carriere-Swallow&Haksar,supranote17.
8
b.PotentialCompetitionEffectsofDataSharing
26F
Theutilityofdataforanygivenfirmordatauserwillnotbeuniversal.Instead,itwillbecontext-dependentandvarybyindustry,especiallyinthecaseofnon-horizontalmergers.27Basedonageneralsurveyofeconomicliterature,weidentifyfourpotentialeffectsthatdataaccessmayhaveoncompetition.Thislistisnotexhaustivebutillustrateshowdataaccessanddataaggregationcanaffectmarketpowerandcompetition.
i.ImprovedServicesandProducts
27F
Mergersofdata-richfirmsthatenhancethepoolingofdatacancreateusefulopportunitiestoenhanceefficiencyandsocialwelfare.28Forexample,greateraccesstodataaboutaclientmayallowafirmtooffermoreconvenient,personalizedproductsthatmeettheclient’sneedsmoreeffectively.Moreover,theuseofmergedsetsofcomplementaryconsumerdatamayenableextremelyaccuratepredictionsofconsumerfinancialbehavior.Suchpredictionsmayallowthepost-mergerentitytooffernew,moretailored,andbetterpricedfinancialproductsandservicestoconsumers,suchasinvestmentadvice.Thismaythenfacilitatebetteravailabilityofproductsandservices,andchoiceforconsumers.
28F
Asafurtherexample,improveddataaccessfromdifferentsourcesmayfacilitatemoreaccurateassessmentsofcreditworthiness,potentiallyenablingthebetterservicingoftraditionallyunderservedmarketsegments.29Thismayresultingreaterdifferentiationofcreditpricing,whichwouldbenefitborrowerswithlowcreditrisk,whilemeaninghigherratesforriskierborrowers.Frostetal(2019)showthatanArgentinebigtechlendercan
27Forinstance,insomemarkets,databrokerscollectinformationfromalternativesourcestocreateoutputsforclients,suchasdigitalconsumerprofilesforadtargeting.Neumannetal(2019)showthat,despitethesophisticationofthemethodsusedthese,canbequiteinaccurateandeconomicallyunattractive.SeeNicoNeumann,CatherineE.Tucker&TimothyWhitfield,Frontiers:HowEffectiveIsThird-PartyConsumerProfiling?EvidencefromFieldStudies,38Mktg.Sci.6(2019).Conversely,forconsumercredit,JagtianiandLemieux(2019)findthattheuseofalternativedatafromnon-traditionalsourceshelpstopredictloandefault.Theuseofsuchdataallowedsomeborrowerstoobtainlowerpricedcredit.Howthecombinationofdifferentdatasetswillworkinpracticethusdependsonspecificitiesoftheindustryanddatasetinquestion.SeeJulapaJagtiani&CatherineLemieux,TheRolesofAlternativeDataandMachineLearninginFinTechLending:EvidencefromtheLendingClubConsumerPlatform,48Fin.Mgmt.1009,1009–29(2019),
/10.1111/fima.12295
.
28Indeed,inviewofthesepotentialbenefits,somejurisdictions,suchastheEUandtheUK,havebroughtforwardspecificpolicymeasurestofacilitatethesharingofpersonaldataattherequestofcustomers(i.e.,openbanking).Thesemeasureshavehelpedtoopenupthefinancialservicessectortonewentrants,includingfintechsandbigtechs.Thesenewentrantsarenowcompetingwithbanksallalongthefinancialservicesvaluechain,notablypayments.SeeBASELCOMMITTEEONBANKINGSUPERVISION,supranote9.
29ZhiguoHe,JingHuang&JidongZhou,OpenBanking:CreditMarketCompetitionWhenBorrowersOwntheData(NBERWorkingPaperNo.w28118,2020),
/abstract=3735686
.
9
29F
usedatafromitse-commerceplatformtomoreaccuratelypredictdefaultandserveborrowerswhowereexcludedfrombankcredit.30
ii.MarketDominanceandPriceDiscrimination
30F
Despitethesepossibleadvantages,mergersofdatainvolveclassicconcernsofconcentrationsofeconomicpower.Aseconomiesbecomeincreasinglydata-driven,thereisgrowingresearchestablishinghowtheaggregationofnewcombinationsofconsumerdata(potentiallyvianewdatasharingpoliciesandpractices)canconveycompetitiv
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 簽署儀式:管城回族區玉山路(南四環)合同正式生效
- 肝硬化患者操作流程
- 計算機一級試題庫及參考答案
- 植物學模擬考試題(附答案)
- 蘋果購銷合同模板范文
- 社交電商的可行性報告
- 腹腔鏡術后護理小技巧
- 總包與分包安全合同管理指南
- 住宅樓保潔服務合同范本
- 技術入股與股權轉讓合同
- 2025年上海嘉定區江橋鎮企業服務有限公司招聘筆試參考題庫附帶答案詳解
- 合作合同模板
- 羅明亮小數的意義課件
- 2025中國冶金地質總局總部招聘筆試考點考試題庫答案及解析
- 2025高職單招考試(語文)試題(附答案)
- 胰島素泵護理管理規范
- 硅pu球場施工方案
- 企業數據資產入表流程研究
- 9.1 日益完善的法律體系課件(共15張)+1視頻-2024-2025學年統編版道德與法治七年級下冊
- 9.1.1 西亞 第1課時 課件 七年級地理下冊 人教版
- 校外培訓機構預收費資金托管協議書范本
評論
0/150
提交評論