河北省保定市競秀區樂凱中學2024屆中考聯考數學試卷含解析_第1頁
河北省保定市競秀區樂凱中學2024屆中考聯考數學試卷含解析_第2頁
河北省保定市競秀區樂凱中學2024屆中考聯考數學試卷含解析_第3頁
河北省保定市競秀區樂凱中學2024屆中考聯考數學試卷含解析_第4頁
河北省保定市競秀區樂凱中學2024屆中考聯考數學試卷含解析_第5頁
已閱讀5頁,還剩19頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

河北省保定市競秀區樂凱中學2024屆中考聯考數學試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.第四屆濟南國際旅游節期間,全市共接待游客686000人次.將686000用科學記數法表示為()A.686×104B.68.6×105C.6.86×106D.6.86×1052.扇形的半徑為30cm,圓心角為120°,用它做成一個圓錐的側面,則圓錐底面半徑為()A.10cm B.20cm C.10πcm D.20πcm3.不等式組的正整數解的個數是()A.5 B.4 C.3 D.24.如圖是幾何體的三視圖,該幾何體是()A.圓錐 B.圓柱 C.三棱柱 D.三棱錐5.如果將拋物線y=x2向右平移1個單位,那么所得的拋物線的表達式是(A.y=x2+1 B.y=x6.如圖,在平面直角坐標系xOy中,點A從出發,繞點O順時針旋轉一周,則點A不經過()A.點M B.點N C.點P D.點Q7.對于反比例函數,下列說法不正確的是()A.點(﹣2,﹣1)在它的圖象上 B.它的圖象在第一、三象限C.當x>0時,y隨x的增大而增大 D.當x<0時,y隨x的增大而減小8.如圖,四邊形ABCD內接于⊙O,若∠B=130°,則∠AOC的大小是()A.130° B.120° C.110° D.100°9.圓錐的底面半徑為2,母線長為4,則它的側面積為()A.8π B.16π

C.4π D.4π10.如圖,在平面直角坐標系中,△ABC與△A1B1C1是以點P為位似中心的位似圖形,且頂點都在格點上,則點P的坐標為()A.(﹣4,﹣3) B.(﹣3,﹣4) C.(﹣3,﹣3) D.(﹣4,﹣4)二、填空題(共7小題,每小題3分,滿分21分)11.如圖,將△ABC繞點A逆時針旋轉100°,得到△ADE.若點D在線段BC的延長線上,則的大小為________.12.方程3x2﹣5x+2=0的一個根是a,則6a2﹣10a+2=_____.13.廊橋是我國古老的文化遺產.如圖,是某座拋物線型的廊橋示意圖,已知拋物線的函數表達式為y=-140x14.如圖,A、B是雙曲線y=上的兩點,過A點作AC⊥x軸,交OB于D點,垂足為C.若D為OB的中點,△ADO的面積為3,則k的值為_____.15.如圖,AD為△ABC的外接圓⊙O的直徑,若∠BAD=50°,則∠ACB=__________°.16.如圖,O是矩形ABCD的對角線AC的中點,M是AD的中點,若AB=6,AD=8,則四邊形ABOM的周長為_____.17.如圖1,在△ABC中,∠ACB=90°,BC=2,∠A=30°,點E,F分別是線段BC,AC的中點,連結EF.(1)線段BE與AF的位置關系是,=.(2)如圖2,當△CEF繞點C順時針旋轉a時(0°<a<180°),連結AF,BE,(1)中的結論是否仍然成立.如果成立,請證明;如果不成立,請說明理由.(3)如圖3,當△CEF繞點C順時針旋轉a時(0°<a<180°),延長FC交AB于點D,如果AD=6﹣2,求旋轉角a的度數.三、解答題(共7小題,滿分69分)18.(10分)某中學為了了解在校學生對校本課程的喜愛情況,隨機調查了部分學生對五類校本課程的喜愛情況,要求每位學生只能選擇一類最喜歡的校本課程,根據調查結果繪制了如下的兩個不完整統計圖.請根據圖中所提供的信息,完成下列問題:(1)本次被調查的學生的人數為;(2)補全條形統計圖(3)扇形統計圖中,類所在扇形的圓心角的度數為;(4)若該中學有2000名學生,請估計該校最喜愛兩類校本課程的學生約共有多少名.19.(5分)益馬高速通車后,將桃江馬跡塘的農產品運往益陽的運輸成本大大降低.馬跡塘一農戶需要將A,B兩種農產品定期運往益陽某加工廠,每次運輸A,B產品的件數不變,原來每運一次的運費是1200元,現在每運一次的運費比原來減少了300元,A,B兩種產品原來的運費和現在的運費(單位:元∕件)如下表所示:品種AB原來的運費4525現在的運費3020(1)求每次運輸的農產品中A,B產品各有多少件;(2)由于該農戶誠實守信,產品質量好,加工廠決定提高該農戶的供貨量,每次運送的總件數增加8件,但總件數中B產品的件數不得超過A產品件數的2倍,問產品件數增加后,每次運費最少需要多少元.20.(8分)已知,拋物線y=ax2+c過點(-2,2)和點(4,5),點F(0,2)是y軸上的定點,點B是拋物線上除頂點外的任意一點,直線l:y=kx+b經過點B、F且交x軸于點A.(1)求拋物線的解析式;(2)①如圖1,過點B作BC⊥x軸于點C,連接FC,求證:FC平分∠BFO;②當k=時,點F是線段AB的中點;(3)如圖2,M(3,6)是拋物線內部一點,在拋物線上是否存在點B,使△MBF的周長最小?若存在,求出這個最小值及直線l的解析式;若不存在,請說明理由.21.(10分)為了解朝陽社區歲居民最喜歡的支付方式,某興趣小組對社區內該年齡段的部分居民展開了隨機問卷調查(每人只能選擇其中一項),并將調查數據整理后繪成如下兩幅不完整的統計圖.請根據圖中信息解答下列問題:求參與問卷調查的總人數.補全條形統計圖.該社區中歲的居民約8000人,估算這些人中最喜歡微信支付方式的人數.22.(10分)當前,“精準扶貧”工作已進入攻堅階段,凡貧困家庭均要“建檔立卡”.某初級中學七年級共有四個班,已“建檔立卡”的貧困家庭的學生人數按一、二、三、四班分別記為A1,A2,A3,A4,現對A1,A2,A3,A4統計后,制成如圖所示的統計圖.(1)求七年級已“建檔立卡”的貧困家庭的學生總人數;(2)將條形統計圖補充完整,并求出A1所在扇形的圓心角的度數;(3)現從A1,A2中各選出一人進行座談,若A1中有一名女生,A2中有兩名女生,請用樹狀圖表示所有可能情況,并求出恰好選出一名男生和一名女生的概率.23.(12分)如圖,的直角頂點P在第四象限,頂點A、B分別落在反比例函數圖象的兩支上,且軸于點C,軸于點D,AB分別與x軸,y軸相交于點F和已知點B的坐標為.填空:______;證明:;當四邊形ABCD的面積和的面積相等時,求點P的坐標.24.(14分)如圖,AB為⊙O的直徑,點D、E位于AB兩側的半圓上,射線DC切⊙O于點D,已知點E是半圓弧AB上的動點,點F是射線DC上的動點,連接DE、AE,DE與AB交于點P,再連接FP、FB,且∠AED=45°.(1)求證:CD∥AB;(2)填空:①當∠DAE=時,四邊形ADFP是菱形;②當∠DAE=時,四邊形BFDP是正方形.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】根據科學記數法的表示形式(a×10n,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數)可得:686000=6.86×105,

故選:D.2、A【解析】試題解析:扇形的弧長為:=20πcm,∴圓錐底面半徑為20π÷2π=10cm,故選A.考點:圓錐的計算.3、C【解析】

先解不等式組得到-1<x≤3,再找出此范圍內的正整數.【詳解】解不等式1-2x<3,得:x>-1,

解不等式≤2,得:x≤3,

則不等式組的解集為-1<x≤3,

所以不等式組的正整數解有1、2、3這3個,

故選C.【點睛】本題考查了一元一次不等式組的整數解,解題的關鍵是正確得出一元一次不等式組的解集.4、C【解析】分析:根據一個空間幾何體的主視圖和左視圖都是長方形,可判斷該幾何體是柱體,進而根據俯視圖的形狀,可判斷是三棱柱,得到答案.詳解:∵幾何體的主視圖和左視圖都是長方形,故該幾何體是一個柱體,又∵俯視圖是一個三角形,故該幾何體是一個三棱柱,故選C.點睛:本題考查的知識點是三視圖,如果有兩個視圖為三角形,該幾何體一定是錐,如果有兩個矩形,該幾何體一定柱,其底面由第三個視圖的形狀決定.5、D【解析】

本題主要考查二次函數的解析式【詳解】解:根據二次函數的解析式形式可得,設頂點坐標為(h,k),則二次函數的解析式為y=a(x-故選D.【點睛】本題主要考查二次函數的頂點式,根據頂點的平移可得到二次函數平移后的解析式.6、C【解析】

根據旋轉的性質:對應點到旋轉中心的距離相等,逐一判斷即可.【詳解】解:連接OA、OM、ON、OP,根據旋轉的性質,點A的對應點到旋轉中心的距離與OA的長度應相等根據網格線和勾股定理可得:OA=,OM=,ON=,OP=,OQ=5∵OA=OM=ON=OQ≠OP∴則點A不經過點P故選C.【點睛】此題考查的是旋轉的性質和勾股定理,掌握旋轉的性質:對應點到旋轉中心的距離相等和用勾股定理求線段的長是解決此題的關鍵.7、C【解析】

由題意分析可知,一個點在函數圖像上則代入該點必定滿足該函數解析式,點(-2,-1)代入可得,x=-2時,y=-1,所以該點在函數圖象上,A正確;因為2大于0所以該函數圖象在第一,三象限,所以B正確;C中,因為2大于0,所以該函數在x>0時,y隨x的增大而減小,所以C錯誤;D中,當x<0時,y隨x的增大而減小,正確,故選C.考點:反比例函數【點睛】本題屬于對反比例函數的基本性質以及反比例函數的在各個象限單調性的變化8、D【解析】分析:先根據圓內接四邊形的性質得到然后根據圓周角定理求詳解:∵∴∴故選D.點睛:考查圓內接四邊形的性質,圓周角定理,掌握圓內接四邊形的對角互補是解題的關鍵.9、A【解析】

解:底面半徑為2,底面周長=4π,側面積=×4π×4=8π,故選A.10、A【解析】

延長A1A、B1B和C1C,從而得到P點位置,從而可得到P點坐標.【詳解】如圖,點P的坐標為(-4,-3).

故選A.【點睛】本題考查了位似變換:如果兩個圖形不僅是相似圖形,而且對應頂點的連線相交于一點,對應邊互相平行,那么這樣的兩個圖形叫做位似圖形,這個點叫做位似中心.二、填空題(共7小題,每小題3分,滿分21分)11、40°【解析】

根據旋轉的性質可得出AB=AD、∠BAD=100°,再根據等腰三角形的性質可求出∠B的度數,此題得解.【詳解】根據旋轉的性質,可得:AB=AD,∠BAD=100°,∴∠B=∠ADB=×(180°?100°)=40°.故填:40°.【點睛】本題考查了旋轉的性質以及等腰三角形的性質,根據旋轉的性質結合等腰三角形的性質求出∠B的度數是解題的關鍵.12、-1【解析】

根據一元二次方程的解的定義,將x=a代入方程3x1-5x+1=0,列出關于a的一元二次方程,通過變形求得3a1-5a的值后,將其整體代入所求的代數式并求值即可.【詳解】解:∵方程3x1-5x+1=0的一個根是a,∴3a1-5a+1=0,∴3a1-5a=-1,∴6a1-10a+1=1(3a1-5a)+1=-1×1+1=-1.故答案是:-1.【點睛】此題主要考查了方程解的定義.此類題型的特點是,利用方程解的定義找到相等關系,再把所求的代數式化簡后整理出所找到的相等關系的形式,再把此相等關系整體代入所求代數式,即可求出代數式的值.13、85【解析】由于兩盞E、F距離水面都是8m,因而兩盞景觀燈之間的水平距離就是直線y=8與拋物線兩交點的橫坐標差的絕對值.故有-1即x2=80,x1所以兩盞警示燈之間的水平距離為:|14、1.【解析】過點B作BE⊥x軸于點E,根據D為OB的中點可知CD是△OBE的中位線,即CD=BE,設A(x,),則B(2x,),故CD=,AD=﹣,再由△ADO的面積為1求出k的值即可得出結論.解:如圖所示,過點B作BE⊥x軸于點E,∵D為OB的中點,∴CD是△OBE的中位線,即CD=BE.設A(x,),則B(2x,),CD=,AD=﹣,∵△ADO的面積為1,∴AD?OC=3,(﹣)?x=3,解得k=1,故答案為1.15、1.【解析】

連接BD,如圖,根據圓周角定理得到∠ABD=90°,則利用互余計算出∠D=1°,然后再利用圓周角定理得到∠ACB的度數.【詳解】連接BD,如圖,∵AD為△ABC的外接圓⊙O的直徑,∴∠ABD=90°,∴∠D=90°﹣∠BAD=90°﹣50°=1°,∴∠ACB=∠D=1°.故答案為1.【點睛】本題考查了三角形的外接圓與外心:三角形外接圓的圓心是三角形三條邊垂直平分線的交點,叫做三角形的外心.也考查了圓周角定理.16、1.【解析】

根據矩形的性質,直角三角形斜邊中線性質,三角形中位線性質求出BO、OM、AM即可解決問題.【詳解】解:∵四邊形ABCD是矩形,∴AD=BC=8,AB=CD=6,∠ABC=90°,∴∵AO=OC,∴∵AO=OC,AM=MD=4,∴∴四邊形ABOM的周長為AB+OB+OM+AM=6+5+3+4=1.故答案為:1.【點睛】本題看成矩形的性質、三角形中位線定理、直角三角形斜邊中線性質等知識,解題的關鍵是靈活應用中線知識解決問題,屬于中考常考題型.17、(1)互相垂直;;(2)結論仍然成立,證明見解析;(3)135°.【解析】

(1)結合已知角度以及利用銳角三角函數關系求出AB的長,進而得出答案;

(2)利用已知得出△BEC∽△AFC,進而得出∠1=∠2,即可得出答案;

(3)過點D作DH⊥BC于H,則DB=4-(6-2)=2-2,進而得出BH=-1,DH=3-,求出CH=BH,得出∠DCA=45°,進而得出答案.【詳解】解:(1)如圖1,線段BE與AF的位置關系是互相垂直;

∵∠ACB=90°,BC=2,∠A=30°,

∴AC=2,

∵點E,F分別是線段BC,AC的中點,

∴=;(2))如圖2,∵點E,F分別是線段BC,AC的中點,

∴EC=BC,FC=AC,

∴,

∵∠BCE=∠ACF=α,

∴△BEC∽△AFC,

∴,

∴∠1=∠2,

延長BE交AC于點O,交AF于點M

∵∠BOC=∠AOM,∠1=∠2

∴∠BCO=∠AMO=90°

∴BE⊥AF;(3)如圖3,∵∠ACB=90°,BC=2,∠A=30°∴AB=4,∠B=60°過點D作DH⊥BC于H∴DB=4-(6-2)=2-2,∴BH=-1,DH=3-,又∵CH=2-(-1)=3-,∴CH=BH,∴∠HCD=45°,∴∠DCA=45°,α=180°-45°=135°.三、解答題(共7小題,滿分69分)18、(1)300;(2)見解析;(3)108°;(4)約有840名.【解析】

(1)根據A種類人數及其占總人數百分比可得答案;

(2)用總人數乘以B的百分比得出其人數,即可補全條形圖;

(3)用360°乘以C類人數占總人數的比例可得;

(4)總人數乘以C、D兩類人數占樣本的比例可得答案.【詳解】解:(1)本次被調查的學生的人數為69÷23%=300(人),

故答案為:300;

(2)喜歡B類校本課程的人數為300×20%=60(人),

補全條形圖如下:

(3)扇形統計圖中,C類所在扇形的圓心角的度數為360°×=108°,

故答案為:108°;

(4)∵2000×=840,

∴估計該校喜愛C,D兩類校本課程的學生共有840名.【點睛】本題考查條形統計圖、扇形統計圖的綜合運用.讀懂統計圖,從統計圖中得到必要的信息是解題關鍵.條形統計圖能清楚地表示出每個項目的數據.19、(1)每次運輸的農產品中A產品有10件,每次運輸的農產品中B產品有30件,(2)產品件數增加后,每次運費最少需要1120元.【解析】

(1)設每次運輸的農產品中A產品有x件,每次運輸的農產品中B產品有y件,根據表中的數量關系列出關于x和y的二元一次方程組,解之即可,(2)設增加m件A產品,則增加了(8-m)件B產品,設增加供貨量后得運費為W元,根據(1)的結果結合圖表列出W關于m的一次函數,再根據“總件數中B產品的件數不得超過A產品件數的2倍”,列出關于m的一元一次不等式,求出m的取值范圍,再根據一次函數的增減性即可得到答案.【詳解】解:(1)設每次運輸的農產品中A產品有x件,每次運輸的農產品中B產品有y件,根據題意得:,解得:,答:每次運輸的農產品中A產品有10件,每次運輸的農產品中B產品有30件,(2)設增加m件A產品,則增加了(8-m)件B產品,設增加供貨量后得運費為W元,增加供貨量后A產品的數量為(10+m)件,B產品的數量為30+(8-m)=(38-m)件,根據題意得:W=30(10+m)+20(38-m)=10m+1060,由題意得:38-m≤2(10+m),解得:m≥6,即6≤m≤8,∵一次函數W隨m的增大而增大∴當m=6時,W最小=1120,答:產品件數增加后,每次運費最少需要1120元.【點睛】本題考查了一次函數的應用,二元一次方程組的應用和一元一次不等式得應用,解題的關鍵:(1)正確根據等量關系列出二元一次方程組,(2)根據數量關系列出一次函數和不等式,再利用一次函數的增減性求最值.20、(1);(2)①見解析;②;(3)存在點B,使△MBF的周長最小.△MBF周長的最小值為11,直線l的解析式為.【解析】

(1)用待定系數法將已知兩點的坐標代入拋物線解析式即可解答.(2)①由于BC∥y軸,容易看出∠OFC=∠BCF,想證明∠BFC=∠OFC,可轉化為求證∠BFC=∠BCF,根據“等邊對等角”,也就是求證BC=BF,可作BD⊥y軸于點D,設B(m,),通過勾股定理用表示出的長度,與相等,即可證明.②用表示出點的坐標,運用勾股定理表示出的長度,令,解關于的一元二次方程即可.(3)求折線或者三角形周長的最小值問題往往需要將某些線段代換轉化到一條直線上,再通過“兩點之間線段最短”或者“垂線段最短”等定理尋找最值.本題可過點M作MN⊥x軸于點N,交拋物線于點B1,過點B作BE⊥x軸于點E,連接B1F,通過第(2)問的結論將△MBF的邊轉化為,可以發現,當點運動到位置時,△MBF周長取得最小值,根據求平面直角坐標系里任意兩點之間的距離的方法代入點與的坐標求出的長度,再加上即是△MBF周長的最小值;將點的橫坐標代入二次函數求出,再聯立與的坐標求出的解析式即可.【詳解】(1)解:將點(-2,2)和(4,5)分別代入,得:解得:∴拋物線的解析式為:.(2)①證明:過點B作BD⊥y軸于點D,設B(m,),∵BC⊥x軸,BD⊥y軸,F(0,2)∴BC=,BD=|m|,DF=∴BC=BF∴∠BFC=∠BCF又BC∥y軸,∴∠OFC=∠BCF∴∠BFC=∠OFC∴FC平分∠BFO.②(說明:寫一個給1分)(3)存在點B,使△MBF的周長最小.過點M作MN⊥x軸于點N,交拋物線于點B1,過點B作BE⊥x軸于點E,連接B1F由(2)知B1F=B1N,BF=BE∴△MB1F的周長=MF+MB1+B1F=MF+MB1+B1N=MF+MN△MBF的周長=MF+MB+BF=MF+MB+BE根據垂線段最短可知:MN<MB+BE∴當點B在點B1處時,△MBF的周長最小∵M(3,6),F(0,2)∴,MN=6∴△MBF周長的最小值=MF+MN=5+6=11將x=3代入,得:∴B1(3,)將F(0,2)和B1(3,)代入y=kx+b,得:,解得:∴此時直線l的解析式為:.【點睛】本題綜合考查了二次函數與一次函數的圖象與性質,等腰三角形的性質,動點與最值問題等,熟練掌握各個知識點,結合圖象作出合理輔助線,進行適當的轉化是解答關鍵.21、(1)參與問卷調查的總人數為500人;(2)補全條形統計圖見解析;(3)這些人中最喜歡微信支付方式的人數約為2800人.【解析】

(1)根據喜歡支付寶支付的人數÷其所占各種支付方式的比例=參與問卷調查的總人數,即可求出結論;

(2)根據喜歡現金支付的人數(41~60歲)=參與問卷調查的總人數×現金支付所占各種支付方式的比例-15,即可求出喜歡現金支付的人數(41~60歲),再將條形統計圖補充完整即可得出結論;

(3)根據喜歡微信支付方式的人數=社區居民人數×微信支付所占各種支付方式的比例,即可求出結論.【詳解】(1)(人.答:參與問卷調查的總人數為500人.(2)(人.補全條形統計圖,如圖所示.(3)(人.答:這些人中最喜歡微信支付方式的人數約為2800人.【點睛】本題考查了條形統計圖、扇形統計圖以及用樣本估計總體,解題的關鍵是:(1)觀察統計圖找出數據,再列式計算;(2)通過計算求出喜歡現金支付的人數(41~60歲);(3)根據樣本的比例×總人數,估算出喜歡微信支付方式的人數.22、(1)15人;(2)補圖見解析.(3)12【解析】

(1)根據三班有6人,占的百分比是40%,用6除以所占的百分比即可得總人數;(2)用總人數減去一、三、四班的人數得到二班的人數即可補全條形圖,用一班所占的比例乘以360°即可得A1所在扇形的圓心角的度數;(3)根據題意畫出樹狀圖,得出所有可能,進而求恰好選出一名男生和一名女生的概率.【詳解】解:(1)七年級已“建檔立卡”的貧困家庭的學生總人數:6÷40%=15人;(2)A2的人數為15﹣2﹣6﹣4=3(人)補全圖形,如圖所示,A1所在圓心角度數為:215(3)畫出樹狀圖如下:共6種等可能結果,符合題意的有3種∴選出一名男生一名女生的概率為:P=36【點睛】本題考查了條形圖與扇形統計圖,概率等知識,準確識圖,從圖中發現有用的信息,正確根據已知畫出樹狀圖得出所有可能是解題關鍵.23、(1)1;(2)證明見解析;(1)點坐標為.【解

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論