高考數(shù)學(xué)二輪復(fù)習(xí)專題教案(人教版)_第1頁
高考數(shù)學(xué)二輪復(fù)習(xí)專題教案(人教版)_第2頁
高考數(shù)學(xué)二輪復(fù)習(xí)專題教案(人教版)_第3頁
高考數(shù)學(xué)二輪復(fù)習(xí)專題教案(人教版)_第4頁
高考數(shù)學(xué)二輪復(fù)習(xí)專題教案(人教版)_第5頁
已閱讀5頁,還剩14頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請(qǐng)進(jìn)行舉報(bào)或認(rèn)領(lǐng)

文檔簡(jiǎn)介

高考數(shù)學(xué)二輪復(fù)習(xí)專題教案(人教版)

集合與簡(jiǎn)易邏輯

一、考點(diǎn)回顧

1、集合的含義及其表示法,子集,全集與補(bǔ)集,子集與并集的定義;

2、集合與其它知識(shí)的聯(lián)系,如一元二次不等式、函數(shù)的定義域、值域等;

3、邏輯聯(lián)結(jié)詞的含義,四種命題之間的轉(zhuǎn)化,了解反證法;

4、含全稱量詞與存在量詞的命題的轉(zhuǎn)化,并會(huì)判斷真假,能寫出一個(gè)命題的否定;

5、充分條件,必要條件及充要條件的意義,能判斷兩個(gè)命題的充要關(guān)系;

6、學(xué)會(huì)用定義解題,理解數(shù)形結(jié)合,分類討論及等價(jià)變換等思想方法。

二、經(jīng)典例題剖析

考點(diǎn)1、集合的概念

1、集合的概念:

(1)集合中元素特征,確定性,互異性,無序性;

(2)集合的分類:

①按元素個(gè)數(shù)分:有限集,無限集;

②按元素特征分;數(shù)集,點(diǎn)集。如數(shù)集{y|y=x2},表示非負(fù)實(shí)數(shù)集,點(diǎn)集{(x,y)|y=x2}表示開口向上,

以y軸為對(duì)稱軸的拋物線;

(3)集合的表示法:

①列舉法:用來表示有限集或具有顯著規(guī)律的無限集,如N+={0,1,2,3,;②描述法。

2、兩類關(guān)系:

(1)元素與集合的關(guān)系,用或表示;

(2)集合與集合的關(guān)系,用一=表示,當(dāng)AB時(shí),稱A是B的子集;當(dāng)AB時(shí),稱A是B的真子集。

3、解答集合問題,首先要正確理解集合有關(guān)概念,特別是集合中元素的三要素;對(duì)于用描述法給出的

集合{x|xwP},要緊緊抓住豎線前面的代表元素x以及它所具有的性質(zhì)P;要重視發(fā)揮圖示法的作用,通過數(shù)

形結(jié)合直觀地解決問題

4、注意空集的特殊性,在解題中,若未能指明集合非空時(shí),要考慮到空集的可能性,如AB,則有人=或

AH兩種可能,此時(shí)應(yīng)分類討論

例1、下面四個(gè)命題正確的是

(A)10以內(nèi)的質(zhì)數(shù)集合是{1,3,5,7}(B)方程x2-4x+4=0的解集是{2,2}

(C)0與{0}表示同一個(gè)集合(D)由1,2,3組成的集合可表示為{1,2,3}或{3,2,1)

解:選(D),最小的質(zhì)數(shù)是2,不是1,故(A)錯(cuò);由集合的定義可知(B)(C)都錯(cuò)。

例2、已知集合A=-1,3,2-1,集合8=3,.若BA,則實(shí)數(shù)=.

解:由BA,且不可能等于-1,可知=2-1,解得:=1.

考點(diǎn)2、集合的運(yùn)算

1、交,并,補(bǔ),定義:AOB={x|xeAHxeB),AUB={x|xGA,或XWB},CUA={x|xGU,且xA},

集合U表示全集;

2、運(yùn)算律,如AC!(BUC)=(ADB)U(ARC),CU(AAB)=(CUA)U(CUB),

CU(AUB)=(CUA)n(CUB)等。

3、學(xué)會(huì)畫Venn圖,并會(huì)用Venn圖來解決問題。

例3、設(shè)集合A={x|2x+1<3},B={x|-3<x<2},則AB等于()

(A){x|-3<x<1}(B){x[l<x<2}(C){x|x?-3}(D){x|x?l}

解:集合A={x|2x+1<3}={x|x?l},集合A和集合B在數(shù)軸上表示如圖1所示,AB是指集合A和

集合B的公共部分,故選(A)。

例4、經(jīng)統(tǒng)計(jì)知,某村有電話的家庭有35家,有農(nóng)用三輪車的家庭有65家,既有電話又有農(nóng)用三輪車的

家庭有20家,則電話和農(nóng)用三輪車至少有一種的家庭數(shù)為()

A.60B.70C.80D.90

解:畫出Venn圖,如圖2,畫圖可得到有一種物品的家庭數(shù)為:15+20+45=80.故選(C)。

例5、(2008廣東卷)第二十九屆夏季奧林匹克運(yùn)動(dòng)會(huì)將于2008年8月8日在北京舉行,若集合A={參

加北京奧運(yùn)會(huì)比賽的運(yùn)動(dòng)員},集合B={參加北京奧運(yùn)會(huì)比賽的男運(yùn)動(dòng)員}。集合C={參加北京奧運(yùn)會(huì)比賽的女

運(yùn)動(dòng)員},則下列關(guān)系正確的是()

A.ABB.BCC.AnB=CD.BUC=A

解:由題意可知,應(yīng)選(D)。

考點(diǎn)3、邏輯聯(lián)結(jié)詞與四種命題

1、命題分類:真命題與假命題,簡(jiǎn)單命題與復(fù)合命題;

2、復(fù)合命題的形式:p且q,p或q,非p;

3、復(fù)合命題的真假:對(duì)p且q而言,當(dāng)q、p為真時(shí),其為真;當(dāng)p、q中有一個(gè)為假時(shí),其為假。對(duì)

p或q而言,當(dāng)p、q均為假時(shí),其為假,?當(dāng)p、q中有一個(gè)為真時(shí),其為真;當(dāng)P為真時(shí),非p為假;當(dāng)p

為假時(shí),非P為真。

4、四種命題:記"若q則p"為原命題,則否命題為"若非p則非q",逆命題為“若q則p",逆否命題為

”若非q則非p"。其中互為逆否的兩個(gè)命題同真假,即等價(jià)。因此,四種命題為真的個(gè)數(shù)只能是偶數(shù)個(gè)。

例6、(2008廣東高考)命題”若函數(shù)在其定義域內(nèi)是減函數(shù),貝『’的逆否命題是()

A、若,則函數(shù)在其定義域內(nèi)不是減函數(shù)

B、若,則函數(shù)在其定義域內(nèi)不是減函數(shù)

C、若,則函數(shù)在其定義域內(nèi)是減函數(shù)

D、若,則函數(shù)在其定義域內(nèi)是減函數(shù)

解:逆否命題是將原命題的結(jié)論的否定作為條件,原命題的條件的否定作為結(jié)論,故應(yīng)選(A)。

例7、已知命題方程有兩個(gè)不相等的負(fù)數(shù)根;方程無實(shí)根.若"或"為真,"且"為假,求實(shí)數(shù)的取值范圍.

解:.一

或?yàn)檎妫覟榧伲妫倩蚣伲?

或,故或.

考點(diǎn)4、全稱量詞與存在量詞

1,全稱量詞與存在量詞

(1)全稱量詞:對(duì)應(yīng)日常語言中的"一切"、"任意的"、"所有的“、“凡是“、”任給"、"對(duì)每一個(gè)"等詞,

用符號(hào)””表示。

(2)存在量詞:對(duì)應(yīng)日常語言中的“存在一個(gè)“、”至少有一個(gè)“、“有個(gè)"、"某個(gè)"、"有些"、“有的"等

詞,用符號(hào)""表示。

2.全稱命題與特稱命題

(1)全稱命題:含有全稱量詞的命題。”對(duì)xM,有p(x)成立“簡(jiǎn)記成"xM,p(x)\

(2)特稱命題:含有存在量詞的命題。"xM,有p(x)成立“簡(jiǎn)記成"xM,p(x)3.同一個(gè)全稱

命題、特稱命題,由于自然語言的不同,可以有不同的表述方法,現(xiàn)列表如下,供參考。

命題

全稱命題xM,p(x)

特稱命題xM,p(x)

表述

方法

①所有的xM,使p(x)成立

①存在xM,使p(x)成立

②對(duì)一切xM,使p(x)成立

②至少有一個(gè)xM,使p(x)成立

③對(duì)每一個(gè)xM,使p(x)成立

③對(duì)有些xM,使p(x)成立

④任給一個(gè)xM,使p(x)成立

④對(duì)某個(gè)xM,使p(x)成立

⑤若xM,則p(x)成立

⑤有一個(gè)xM,使p(x)成立

4.常見詞語的否定如下表所示:

詞語

一定是

都是

大于

小于

詞語的否定

不是

一定不是

不都是

小于或等于

大于或等于

詞語

必有一^?

至少有n個(gè)

至多有一個(gè)

所有x成立

詞語的否定

一個(gè)也沒有

至多有n-1個(gè)

至少有兩個(gè)

存在一個(gè)x不成立

例8、(2007山東)命題”對(duì)任意的"的否定是()

A.不存在B.存在

C.存在D.對(duì)任意的

解:命題的否定與否命題不同,命題的否定是將全稱量詞改為特稱量詞,或?qū)⑻胤Q量詞改為全稱量詞,

再否定結(jié)論即可,故選(C)。

例9、命題“,有”的否定是.

解:將"存在"改為"任意",再否定結(jié)論,注意存在與任意的數(shù)學(xué)符號(hào)表示法,答案:

考點(diǎn)5、充分條件與必要條件

1、在判斷充分條件及必要條件時(shí),首先要分清哪個(gè)命題是條件,哪個(gè)命題是結(jié)論,其次,結(jié)論要分四

種情況說明:充分不必要條件,必要不充分條件,充分且必要條件,既不充分又不必要條件。從集合角度看,

理解”越小越充分”的含義。

例10、(2008安徽卷)是方程至少有一個(gè)負(fù)數(shù)根的()

A.必要不充分條件B.充分不必要條件C.充分必要條件D.既不充分也不必要條件

解:當(dāng),得a<l時(shí)方程有根。a<0時(shí),,方程有負(fù)根,又a=l時(shí),方程根為,所以選(B)。

例11、(2008湖北卷)若集合,則:()

A.是的充分條件,不是的必要條件

B.不是的充分條件,是的必要條件

C是的充分條件,又是的必要條件.

D.既不是的充分條件,又不是的必要條件

解:反之不然故選A

三、方法總結(jié)與高考預(yù)測(cè)

(-)思想方法總結(jié)

1.數(shù)形結(jié)合2.分類討論

(二)高考預(yù)測(cè)

1.集合是每年高考必考的知識(shí)點(diǎn)之一。題型一般是選擇和填空的形式,主要考查集合的運(yùn)算和求

有限集合的子集及其個(gè)數(shù).

2.簡(jiǎn)易邏輯是在高考中應(yīng)一般在選擇題、填空題中出現(xiàn),如果在解答題中出現(xiàn),則只會(huì)是中低檔

題.

3.集合、簡(jiǎn)易邏輯知識(shí),作為一種數(shù)學(xué)工具,在函數(shù)、方程、不等式、排列組合及曲線與方程等

方面都有廣泛的運(yùn)用,高考題中常以上面內(nèi)容為載體,以集合的語言為表現(xiàn)形式,結(jié)合簡(jiǎn)易邏輯知識(shí)考查學(xué)

生的數(shù)學(xué)思想、數(shù)學(xué)方法和數(shù)學(xué)能力,題型常以解答題的形式出現(xiàn).

四、復(fù)習(xí)建議

1.在復(fù)習(xí)中首先把握基礎(chǔ)性知識(shí),深刻理解本單元的基本知識(shí)點(diǎn)、基本數(shù)學(xué)思想和基本數(shù)學(xué)方法.重

點(diǎn)掌握集合、充分條件與必要條件的概念和運(yùn)算方法.要真正掌握數(shù)形結(jié)合思想一用文氏圖解題.

2.涉及本單元知識(shí)點(diǎn)的高考題,綜合性大題不多.所以在復(fù)習(xí)中不宜做過多過高的要求,只要靈活掌

握小型綜合題型(如集合與映射,集合與自然數(shù)集,集合與不等式,集合與方程等,充分條件與必要條件與三

角、立幾、解幾中的知識(shí)點(diǎn)的結(jié)合等)映射的概念以選擇題型出現(xiàn),難度不大。就可以了

3.活用“定義法”解題。定義是一切法則與性質(zhì)的基礎(chǔ),是解題的基本出發(fā)點(diǎn)。利用定義,可直接判

斷所給的對(duì)應(yīng)是否滿足映射或函數(shù)的條件,證明或判斷函數(shù)的單調(diào)性與奇偶性并寫出函數(shù)的單調(diào)區(qū)間等。

4.重視“數(shù)形結(jié)合”滲透。"數(shù)缺形時(shí)少直觀,形缺數(shù)時(shí)難入微”。當(dāng)你所研究的問題較為抽象時(shí),當(dāng)你的

思維陷入困境時(shí),當(dāng)你對(duì)雜亂無章的條件感到頭緒混亂時(shí),一個(gè)很好的建議便是:畫個(gè)圖!利用圖形的直觀性,

可迅速地破解問題,乃至最終解決問題。

5.實(shí)施"定義域優(yōu)先"原則。函數(shù)的定義域是函數(shù)最基本的組成部分,任何對(duì)函數(shù)性質(zhì)的研究都離不開函

數(shù)的定義域。例如,求函數(shù)的單調(diào)區(qū)間,必須在定義域范圍內(nèi);通過求出反函數(shù)的定義域,可得到原函數(shù)的

值域;定義域關(guān)于原點(diǎn)對(duì)稱,是函數(shù)為奇函數(shù)或偶函數(shù)的必要條件。為此,應(yīng)熟練掌握求函數(shù)定義域的原則

與方法,并貫徹到解題中去。

6.強(qiáng)化"分類思想”應(yīng)用。指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的性質(zhì)均與其底數(shù)是否大于1有關(guān);對(duì)于根式的意義及

其性質(zhì)的討論要分清n是奇數(shù)還是偶數(shù)等。

不等式

一、考點(diǎn)知識(shí)回顧

不等式的性質(zhì)是證明不等式和解不等式的基礎(chǔ)。

不等式的基本性質(zhì)有:

對(duì)稱性:a>bb<a;傳遞性:若a>b,b>c,貝!Ia>c;可加性:a>ba+c>b+c;

可乘性:a>b,當(dāng)c>0時(shí),ac>bc;當(dāng)c<0時(shí),ac<bc.<p="">

不等式運(yùn)算性質(zhì):

(1)同向相加:若a>b,c>d,則a+c>b+d;(2)異向相減:,.

(3)正數(shù)同向相乘:若a>b>0,c>d>0,貝[]ac>bdo(4)乘方法則:若a>b>0,neN+,貝1J;

(5)開方法則:若a>b>0,neN+,則;(6)倒數(shù)法則:若ab>0,a>b,則。

2、基本不等式(或均值不等式);利用完全平方式的性質(zhì),可得a2+b2>2ab(a,beR),該不等式

可推廣為a2+b2221ab|;或變形為|ab|4;當(dāng)a,b20時(shí),a+b2或ab4.

3、不等式的證明:

不等式證明的常用方法:比較法,公式法,分析法,反證法,換元法,放縮法;

在不等式證明過程中,應(yīng)注重與不等式的運(yùn)算性質(zhì)聯(lián)合使用;

證明不等式的過程中,放大或縮小應(yīng)適度。

不等式的解法:

解不等式是尋找使不等式成立的充要條件,因此在解不等式過程中應(yīng)使每一步的變形都要恒等。

一元二次不等式(組)是解不等式的基礎(chǔ),一元二次不等式是解不等式的基本題型。一元二次不等式與

相應(yīng)的函數(shù),方程的聯(lián)系

求一般的一元二次不等式或的解集,要結(jié)合的根及二次函數(shù)圖象確定解集.

對(duì)于一元二次方程,設(shè),它的解按照可分為三種情況.相應(yīng)地,二次函數(shù)的圖象與軸的位置關(guān)系也分為

三種情況.因此,我們分三種情況討論對(duì)應(yīng)的一元二次不等式的解集,注意三個(gè)“二次”的聯(lián)系。

含參數(shù)的不等式應(yīng)適當(dāng)分類討論。

5、不等式的應(yīng)用相當(dāng)廣泛,如求函數(shù)的定義域,值域,研究函數(shù)單調(diào)性等。在解決問題過程中,應(yīng)當(dāng)

善于發(fā)現(xiàn)具體問題背景下的不等式模型。

用基本不等式求分式函數(shù)及多元函數(shù)最值是求函數(shù)最值的初等數(shù)學(xué)方法之一。

研究不等式結(jié)合函數(shù)思想,數(shù)形結(jié)合思想,等價(jià)變換思想等。

6、線性規(guī)劃問題的解題方法和步驟

解決簡(jiǎn)單線性規(guī)劃問題的方法是圖解法,即借助直線(線性目標(biāo)函數(shù)看作斜率確定的一族平行直線)與

平面區(qū)域(可行域)有交點(diǎn)時(shí),直線在y軸上的截距的最大值或最小值求解。它的步驟如下:

(1)設(shè)出未知數(shù),確定目標(biāo)函數(shù)。

(2)確定線性約束條件,并在直角坐標(biāo)系中畫出對(duì)應(yīng)的平面區(qū)域,即可行域。

(3)由目標(biāo)函數(shù)z=ax+by變形為y=-x+,所以,求z的最值可看成是求直線y=-x+在y軸

上截距的最值(其中a、b是常數(shù),z隨x,y的變化而變化)。

(4)作平行線:將直線ax+by=0平移(即作ax+by=0的平行線),使直線與可行域有交點(diǎn),且觀

察在可行域中使最大(或最小)時(shí)所經(jīng)過的點(diǎn),求出該點(diǎn)的坐標(biāo)。

(5)求出最優(yōu)解:將(4)中求出的坐標(biāo)代入目標(biāo)函數(shù),從而求出z的最大(或最小)值。

7、絕對(duì)值不等式

(1)|x|<a(a>0)的解集為:{x|-a<x<a};

Ix|>a(a>0)的解集為:{x[x>a或x<-a}。

(2)

二、考點(diǎn)剖析

考點(diǎn)一:不等關(guān)系與不等式

【命題規(guī)律】高考中,對(duì)本節(jié)內(nèi)容的考查,主要放在不等式的性質(zhì)上,題型多為選擇題或填空題,屬容

易題。

例1、(2008廣東文)設(shè),若,則下列不等式中正確的是()

A.B.C,D.

解:由知,,所以,故選C.

點(diǎn)評(píng):本題考查絕對(duì)值的概念和絕對(duì)值的性質(zhì),如果用特殊值法也能求解。

例2、(2007上海理科)已知為非零實(shí)數(shù),且,則下列命題成立的是()

A、B、C、D、

解:取a=-3,b=2,由(A)(B)(D)都錯(cuò),故(C).

點(diǎn)評(píng):特殊值法是解選擇題的一種技巧,在應(yīng)試時(shí)要時(shí)刻牢記有這么一種方法。這晨a,b沒有說明符

號(hào),注意不要錯(cuò)用性質(zhì)。

考點(diǎn)二:一元二次不等式及其解法

【命題規(guī)律】高考命題中,對(duì)一元二次不等式解法的考查,若以選擇題、填空題出現(xiàn),則會(huì)對(duì)不等式直

接求解,或經(jīng)常地與集合、充要條件相結(jié)合,難度不大。若以解答題出現(xiàn),T殳會(huì)與參數(shù)有關(guān),或?qū)?shù)分

類討論,或求參數(shù)范圍,難度以中檔題為主。

例3、(2007湖南)不等式的解集是()

A.B.C.D.

解:原不等式可化為x2-x>0,即x(x-l)>0,所以x<0或x>1,選(D).

例4、(2007福建)""是""的什么條件……()

A.充分而不必要B.必要而不充分C.充要D.既不充分也不必要

解:由|x|<2,得:-2<x<2,由得:-2<x<3,

-2<x<2成立,貝U-2<x<3—做立,反之貝!]不一定成立,所以,選(A)。

點(diǎn)評(píng):本題是不等式與充要條件結(jié)合的考題,先解出不等式的解集來,再由充分必要條件的判斷方法可

得。

例5、(2008江西文)不等式的解集為.

解:原不等式變?yōu)椋芍笖?shù)函數(shù)的增減性,得:

,所以填:.

點(diǎn)評(píng):不等式與指數(shù)函數(shù)交匯、不等式與對(duì)數(shù)函數(shù)交匯、不等式與數(shù)列交匯是經(jīng)常考查的內(nèi)容,應(yīng)加強(qiáng)

訓(xùn)練。

例6、已知集合,,若,求實(shí)數(shù)的取值范圍.

解:.

設(shè),它的圖象是一條開口向上的拋物線.

(1)若,滿足條件,此時(shí),即,解得;

(2)若,設(shè)拋物線與軸交點(diǎn)的橫坐標(biāo)為,且,欲使,應(yīng)有,

結(jié)合二次函數(shù)的圖象,得即解得.

綜上,的取值范圍是.

點(diǎn)評(píng):本題是一元二次不等式與集合結(jié)合的綜合題,考查含參數(shù)一元二次不等式的解法,注意分類討論

思想的應(yīng)用,分類時(shí)做到不遺漏。

考點(diǎn)三:簡(jiǎn)單的線性規(guī)劃

【命題規(guī)律】線性規(guī)劃問題時(shí)多以選擇、填空題的形式出現(xiàn),題型以容易題、中檔題為主,考查平面區(qū)

域的面積、最優(yōu)解的問題;隨著課改的深入,近年來,以解答題的形式來考查的試題也時(shí)有出現(xiàn),考查學(xué)生

解決實(shí)際問題的能力。

例7、(2008安徽文)若為不等式組表示的平面區(qū)域,則當(dāng)從-2連續(xù)變化到1時(shí),動(dòng)直線

掃過中的那部分區(qū)域的面積為()

A.B.1C.D.5

解:如圖知區(qū)域的面積是AOAB去掉一個(gè)小直角三角形。

(陰影部分面積比1大,比小,故選G不需要算出來)

點(diǎn)評(píng):給出不等式組,畫出平面區(qū)域,求平面區(qū)域的面積的問題是經(jīng)常考查的試題之一,如果區(qū)域是不

規(guī)節(jié)圖形,將它分割成規(guī)節(jié)圖形分別求它的面積即可。

例8、(2008廣東理)若變量x,y滿足,則z=3x+2y的最大值是()

A.90B.80

C.70D.40

解:做出可行域如圖所示.目標(biāo)函數(shù)化為:y=-,令z=0,畫y=-,及其平行線,如右圖,當(dāng)它經(jīng)

過兩直線的交點(diǎn)時(shí),取得取大值。

解方程組彳導(dǎo).所以,故答C.

點(diǎn)評(píng):求最優(yōu)解,畫出可行域,將目標(biāo)函數(shù)化為斜截式,再令z=0,畫它的平行線,看y軸上的截距

的最值,就是最優(yōu)解。

例9、(2007山東)本公司計(jì)劃2008年在甲、乙兩個(gè)電視臺(tái)做總時(shí)間不超過300分鐘的廣告,廣告

總費(fèi)用不超過9萬元,甲、乙電視臺(tái)的廣告收費(fèi)標(biāo)準(zhǔn)分別為元/分鐘和200元/分鐘,規(guī)定甲、乙兩個(gè)電視臺(tái)

為該公司所做的每分鐘廣告,能給公司事來的收益分別為0.3萬元和0.2萬元.問該公司如何分配在甲、乙

兩個(gè)電視臺(tái)的廣告時(shí)間,才能使公司的收益最大,最大收益是多少萬元?

解:設(shè)公司在甲電視臺(tái)和乙電視臺(tái)做廣告的時(shí)間分別為分鐘和分鐘,總收益為元,由題意得

目標(biāo)函數(shù)為.

二元一次不等式組等價(jià)于

作出二元一次不等式組所表示的平面區(qū)域,即可行域.

如圖:

作直線,即.

平移直線,從圖中可知,當(dāng)直線過點(diǎn)時(shí),目標(biāo)函數(shù)取得最大值.

聯(lián)立解得?點(diǎn)的坐標(biāo)為.

(元)

答:該公司在甲電視臺(tái)做100分鐘廣告,在乙電視臺(tái)做200分鐘廣告,公司的收益最大,收益是70萬

元.

點(diǎn)評(píng):用線性規(guī)劃的方法解決實(shí)際問題能提高學(xué)生分析問題、解決問題的能力,隨著課改的深入,這類

試題應(yīng)該是高考的熱點(diǎn)題型之一。

考點(diǎn)四:基本不等關(guān)系

【內(nèi)容解讀】了解基本不等式的證明過程,會(huì)用基本不等式解決簡(jiǎn)單的最值問題,理解用綜合法、分析

法、比較法證明不等式。

利用基本不等式可以求函數(shù)或代數(shù)式的最值問題:

合理拆分項(xiàng)或配湊因式是經(jīng)常用的解題技巧,而拆與湊的過程中,一要考慮定理使用的條件(兩數(shù)都為

正);二要考慮必須使和或積為定值;三要考慮等號(hào)成立的條件(當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立),它具有一

定的靈活性和變形技巧,高考中常被設(shè)計(jì)為一個(gè)難點(diǎn).

【命題規(guī)律】高考命題重點(diǎn)考查均值不等式和證明不等式的常用方法,單純不等式的命題,主要出現(xiàn)在

選擇題或填空題,一般難度不太大。

例10、(2007上海理)已知,且,則的最大值是.

解:,當(dāng)且僅當(dāng)x=4y=時(shí)取等號(hào).

點(diǎn)評(píng):本題考查基本不等式求最值的問題,注意變形后使用基本不等式。

例11、(2008浙江文)已知()

(A)(B)(C)(D)

解:由,且,???,???。

點(diǎn)評(píng):本小題主要考查不等式的重要不等式知識(shí)的運(yùn)用。

例12、(2008江蘇)已知,,則的最小值.

解:由得

代入得,當(dāng)且僅當(dāng)=3時(shí)取.

點(diǎn)評(píng):本小題考查二元基本不等式的運(yùn)用.題目有有三個(gè)未知數(shù),通過已知代數(shù)式,對(duì)所求式子消去一

個(gè)未知數(shù),用基本不等式求解。

考點(diǎn)五:絕對(duì)值不等式

【內(nèi)容解讀】掌握絕對(duì)值不等式|x|<a,|x|>a(a>0)的解法,了解絕對(duì)值不等式與其它內(nèi)容的

孑小口。

【命題規(guī)律】本節(jié)內(nèi)容多以選擇、填空題為主,有時(shí)與充分必要條件相結(jié)合來考查,難度不大。

例13、(2008湖南文)"卜-1|<2"是\<3”的()

A.充分不必要條件B.必要不充分條件C.充分必要條件D.即不充分也不必要條件

解:由|x-l|<2得-1<x<3,在-1<x<3的數(shù)都有乂<3,但當(dāng)x<3時(shí),不一定有-1<x<3,

如x=-5,所以選(A).

點(diǎn)評(píng):本題考查絕對(duì)值不等式的解法和充分條件必要條件,可以用特殊值法來驗(yàn)證,充分性與必要性的

成立。

例14、(2008四川文)不等式的解集為()

(A)(B)(C)(D)

解:??????即即故選A;

點(diǎn)評(píng):此題重點(diǎn)考察絕對(duì)值不等式的解法;準(zhǔn)確進(jìn)行不等式的轉(zhuǎn)化去掉絕對(duì)值符號(hào)為解題的關(guān)鍵,可用

公式法,平方法,特值驗(yàn)證淘汰法;

考點(diǎn)六:不等式的綜合應(yīng)用

【命題規(guī)律】不等式的綜合應(yīng)用多以應(yīng)用題為主,屬解答題,有一定的難度。

例15、(2008江蘇模擬)如圖,某單位用木料制作如圖所示的框架,框架的下部是邊長(zhǎng)分別為(單位:

米)的矩形,上部是斜邊長(zhǎng)為的等腰直角三角形,要求框架圍成的總面積為8平方米.

(I)求的關(guān)系式,并求的取值范圍;

(n)問分別為多少時(shí)用料最省?

解:(I)由題意得:

(H)設(shè)框架用料長(zhǎng)度為,則

當(dāng)且僅當(dāng)滿足

答:當(dāng)米,米時(shí),用料最少.

點(diǎn)評(píng):本題考查利用基本不等式解決實(shí)際問題,是面積固定,求周長(zhǎng)最省料的模型,解題時(shí),列出一個(gè)

面積的等式,代入周長(zhǎng)所表示的代數(shù)式中,消去一個(gè)未知數(shù),這是常用的解題方法。

例16、(2008江蘇模擬)某化工企業(yè)2007年底投入100萬元,購(gòu)入一套污水處理設(shè)備.該設(shè)備

每年的運(yùn)轉(zhuǎn)費(fèi)用是0.5萬元,此外每年都要花費(fèi)一定的維護(hù)費(fèi),第一年的維護(hù)費(fèi)為2萬元,由于設(shè)備老化,

以后每年的維護(hù)費(fèi)都比上一年增加2萬元.

(1)求該企業(yè)使用該設(shè)備年的年平均污水處理費(fèi)用(萬元);

(2)問為使該企業(yè)的年平均污水處理費(fèi)用最低,該企業(yè)幾年后需要重新更換新的污水

處理設(shè)備?

解:(1)即();

(2)由均值不等式得:

(萬元),當(dāng)且僅當(dāng),即時(shí)取到等號(hào).

答:該企業(yè)10年后需要重新更換新設(shè)備.

點(diǎn)評(píng):本題又是基本不等式的一個(gè)應(yīng)用,第一問求出函數(shù)關(guān)系式是關(guān)鍵,第二問難度不大。

考點(diǎn)七:不等式的證明

【內(nèi)容解讀】證明不等式的方法靈活多樣,但比較法、綜合法、分析法仍是證明不等式的最基本方法.要

依據(jù)題設(shè)、題斷的結(jié)構(gòu)特點(diǎn)、內(nèi)在聯(lián)系,選擇適當(dāng)?shù)淖C明方法,要熟悉各種證法中的推理思維,并掌握相應(yīng)

的步驟,技巧和語言特點(diǎn).比較法的一般步驟是:作差(商)T變形T判斷符號(hào)(值).

【命題規(guī)律】不等式的證明多以解答題的形式出現(xiàn),屬中等偏難的試題。文科考查的可能性不大。

例17、已知,求證

證明:只需證:

即證:成立

原不等式成立.

點(diǎn)評(píng):用分析法證明不等式也是常用的證明方法,通過分析法,能夠找到證明的思路。

三、方法總結(jié)與高考預(yù)測(cè)

(-)方法總結(jié)

1,熟練掌握不等式的基本性質(zhì),常見不等式(如一元二次不等式,絕對(duì)值不等式等)的解法,不等式在

實(shí)際問題中的應(yīng),不等式的常用證明方法

2.數(shù)學(xué)中有許多相似性,如數(shù)式相似,圖形相似,命題結(jié)論的相似等,利用這些相似性,通過構(gòu)造輔

助模型,促進(jìn)轉(zhuǎn)化,以期不等式得到證明。可以構(gòu)造函數(shù)、方程、數(shù)列、向量、復(fù)數(shù)和圖形等數(shù)學(xué)模型,針

對(duì)欲證不等式的構(gòu)特點(diǎn),選擇恰當(dāng)?shù)哪P停瑢⒉坏仁絾栴}轉(zhuǎn)化為上述數(shù)學(xué)模型問題,順利解決不等式的有關(guān)

問題。

(二)高考預(yù)測(cè)

在近年的高考中,不等式的考查有選擇題、填空題、解答題都有,不僅考查不等式的基礎(chǔ)知識(shí),基本技

能,基本方法,而且還考查了分析問題、解決問題的能力。解答題以函數(shù)、不等式、數(shù)列導(dǎo)數(shù)相交匯處命題,

函數(shù)與不等式相結(jié)合的題多以導(dǎo)數(shù)的處理方式解答,函數(shù)不等式相結(jié)合的題目,多是先以直覺思維方式定方

向,以遞推、數(shù)學(xué)歸納法等方法解決,具有一定的靈活性。

由上述分析,預(yù)計(jì)不等式的性質(zhì),不等式的解法及重要不等知識(shí)將以選擇題或填空的形式出現(xiàn);解答題

可能出現(xiàn)解不等與證不等式。如果是解不等式含參數(shù)的不等式可能性比較大,如果是證明題將是不等式與數(shù)

列、函數(shù)、導(dǎo)數(shù)、向量等相結(jié)合的綜合問題,用導(dǎo)數(shù)解答這類問題仍然值得重視。

五、復(fù)習(xí)建議

1.在復(fù)習(xí)中應(yīng)掌握證明不等式的常用思想方法:比較思想;綜合思想;分析思想;放縮思想;反證思

想;函數(shù)思想;換元思想;導(dǎo)數(shù)思想.

2、在復(fù)習(xí)解不等式過程中,注意培養(yǎng)、強(qiáng)化與提高函數(shù)與方程、等價(jià)轉(zhuǎn)化、分類討論、數(shù)形結(jié)合的數(shù)

學(xué)思想和方法,逐步提升數(shù)學(xué)素養(yǎng),提高分析解決綜合問題的能力.能根據(jù)各類不等式的特點(diǎn),變形的特殊

性,歸納出各類不等式的解法和思路以及具體解法。

函數(shù)

一、考點(diǎn)回顧

1.理解函數(shù)的概念,了解映射的概念.

2.了解函數(shù)的單調(diào)性和奇偶性的概念,掌握判斷一些簡(jiǎn)單函數(shù)的單調(diào)性和奇偶性的方法,并能利用函數(shù)

的性質(zhì)簡(jiǎn)化函數(shù)圖像的繪制過程.

3.了解反函數(shù)的概念及互為反函數(shù)的函數(shù)圖象間的關(guān)系.

4.理解分?jǐn)?shù)指數(shù)幕的概念,掌握有理指數(shù)幕的運(yùn)算性質(zhì),掌握指數(shù)函數(shù)的概念、圖象和性質(zhì).

5.理解對(duì)數(shù)的概念,掌握對(duì)數(shù)的運(yùn)算性質(zhì),掌握對(duì)數(shù)函數(shù)的概念、圖象和性質(zhì).

6.能夠運(yùn)用函數(shù)的性質(zhì)、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)的性質(zhì)解決某些簡(jiǎn)單的實(shí)際問題.

7、掌握函數(shù)零點(diǎn)的概念,用二分法求函數(shù)的近似解,會(huì)應(yīng)用函數(shù)知識(shí)解決一些實(shí)際問題。

二、經(jīng)典例題剖析

考點(diǎn)一:函數(shù)的性質(zhì)與圖象

函數(shù)的性質(zhì)是研究初等函數(shù)的基石,也是高考考查的重點(diǎn)內(nèi)容.在復(fù)習(xí)中要對(duì)定義深入理解.

復(fù)習(xí)函數(shù)的性質(zhì),可以從"數(shù)"和"形"兩個(gè)方面,從理解函數(shù)的單調(diào)性和奇偶性的定義入手,在判斷和證

明函數(shù)的性質(zhì)的問題中得以鞏固,在求復(fù)合函數(shù)的單調(diào)區(qū)間、函數(shù)的最值及應(yīng)用問題的過程中得以深化.具

體要求是:

1,正確理解函數(shù)單調(diào)性和奇偶性的定義,能準(zhǔn)確判斷函數(shù)的奇偶性,以及函數(shù)在某一區(qū)間的單調(diào)性,

能熟練運(yùn)用定義證明函數(shù)的單調(diào)性和奇偶性.

2.從數(shù)形結(jié)合的角度認(rèn)識(shí)函數(shù)的單調(diào)性和奇偶性,深化對(duì)函數(shù)性質(zhì)幾何特征的理解和運(yùn)用,歸納總結(jié)

求函數(shù)最大值和最小值的常用方法.

3.培養(yǎng)學(xué)生用變化的觀點(diǎn)分析問題,提高學(xué)生用換元、轉(zhuǎn)化、數(shù)形結(jié)合等數(shù)學(xué)思想方法解決問題的能

力.

函數(shù)的圖象是函數(shù)性質(zhì)的直觀載體,函數(shù)的性質(zhì)可以通過函數(shù)的圖像直觀地表現(xiàn)出來。

因此,掌握函數(shù)的圖像是學(xué)好函數(shù)性質(zhì)的關(guān)鍵,這也正是"數(shù)形結(jié)合思想”的體現(xiàn)。復(fù)習(xí)函數(shù)圖像要注意

以下方面。

1.掌握描繪函數(shù)圖象的兩種基本方法一描點(diǎn)法和圖象變換法.

2.會(huì)利用函數(shù)圖象,進(jìn)一步研究函數(shù)的性質(zhì),解決方程、不等式中的問題.

3.用數(shù)形結(jié)合的思想、分類討論的思想和轉(zhuǎn)化變換的思想分析解決數(shù)學(xué)問題.

4.掌握知識(shí)之間的聯(lián)系,進(jìn)一步培養(yǎng)觀察、分析、歸納、概括和綜合分析能力.

例1、(2008廣東汕頭二模)設(shè)集合A={x|x<-1或x>l},B={x|log2x>0},貝UACIB=()

A.{x|x>l}B.{x|x>0}C.{x|x<-l}D.{x|x<-l或x>l}

【解析】:由集合B得x>l,\AnB={x|x>l},故選(A)。

[點(diǎn)評(píng)]本題主要考查對(duì)數(shù)函數(shù)圖象的性質(zhì),是函數(shù)與集合結(jié)合的試題,難度不大,屬基礎(chǔ)題。

例2、(2008廣東惠州一模)"龜兔賽跑”講述了這樣的故事:領(lǐng)先的兔子看著慢慢爬行的烏龜,驕傲

起來,睡了一覺,當(dāng)它醒來時(shí),發(fā)現(xiàn)烏龜快到終點(diǎn)了,于是急忙追趕,但為時(shí)已晚,烏龜還是先到達(dá)了終點(diǎn)…

用SLS2分別表示烏龜和兔子所行的路程,t為時(shí)間,則下圖與故事情節(jié)相吻合的是()

【解析】:選(B),在(B)中,烏龜?shù)竭_(dá)終點(diǎn)時(shí),兔子在同一時(shí)間的路程比烏龜短。

[點(diǎn)評(píng)]函數(shù)圖象是近年高考的熱點(diǎn)的試題,考查函數(shù)圖象的實(shí)際應(yīng)用,考查學(xué)生解決問題、分析問題

的能力,在復(fù)習(xí)時(shí)應(yīng)引起重視。

例3、(2008全國(guó)一)汽車經(jīng)過啟動(dòng)、加速行駛、勻速行駛、減速行駛之后停車,若把這一過程中汽車

的行駛路程看作時(shí)間的函數(shù),其圖像可能是()

【解析】根據(jù)汽車加速行駛,勻速行駛,減速行駛結(jié)合函數(shù)圖象可知選A.

例4、(2008福建文)函數(shù),若,則的值為()

A.3B.OC.-lD.-2

【解析】:為奇函數(shù),又故即.

[點(diǎn)評(píng)]本題考查函數(shù)的奇偶性,考查學(xué)生觀察問題的能力,通過觀察能夠發(fā)現(xiàn)如何通過變換式子與學(xué)

過的知識(shí)相聯(lián)系,使問題迎刃而解。

例5、(2008廣東高考試題)設(shè),函數(shù),

,,試討論函數(shù)的單調(diào)性.

【解析】

對(duì)于,當(dāng)時(shí),函數(shù)在上是增函數(shù);

當(dāng)時(shí),函數(shù)在上是減函數(shù),在上是增函數(shù);

對(duì)于,當(dāng)時(shí),函數(shù)在上是減函數(shù);

當(dāng)時(shí),函數(shù)在上是減函數(shù),在上是增函數(shù)。

[點(diǎn)評(píng)]在處理函數(shù)單調(diào)性的證明時(shí),可以充分利用基本函數(shù)的性質(zhì)直接處理,但學(xué)習(xí)了導(dǎo)數(shù)后,函數(shù)

的單調(diào)性就經(jīng)常與函數(shù)的導(dǎo)數(shù)聯(lián)系在一起,利用導(dǎo)數(shù)的性質(zhì)來處理函數(shù)的單調(diào)進(jìn)性,顯得更加簡(jiǎn)單、方便。

考點(diǎn)二:二次函數(shù)

二次函數(shù)是中學(xué)代數(shù)的基本內(nèi)容之一,它既簡(jiǎn)單又具有豐富的內(nèi)涵和外延.作為最基本的初等函數(shù),可

以以它為素材來研究函數(shù)的單調(diào)性、奇偶性、最值等性質(zhì),還可建立起函數(shù)、方程、不等式之間的有機(jī)聯(lián)系;

作為拋物線,可以聯(lián)系其它平面曲線討論相互之間關(guān)系.這些縱橫聯(lián)系,使得圍繞二次函數(shù)可以編制出層出

不窮、靈活多變的數(shù)學(xué)問題.同時(shí),有關(guān)二次函數(shù)的內(nèi)容又與近、現(xiàn)代數(shù)學(xué)發(fā)展緊密聯(lián)系,是學(xué)生進(jìn)入高校

繼續(xù)深造的重要知識(shí)基礎(chǔ).因此,從這個(gè)意義上說,有關(guān)二次函數(shù)的問題在高考中頻繁出現(xiàn),也就不足為奇

了.學(xué)習(xí)二次函數(shù),可以從兩個(gè)方面入手:一是解析式,二是圖像特征.從解析式出發(fā),可以進(jìn)行純粹的代數(shù)

推理,這種代數(shù)推理、論證的能力反映出一個(gè)人的基本數(shù)學(xué)素養(yǎng);從圖像特征出發(fā),可以實(shí)現(xiàn)數(shù)與形的自然

結(jié)合,這正是中學(xué)數(shù)學(xué)中一種非常重要的思想方法.

例6.若函數(shù)(常數(shù))是偶函數(shù),且它的值域?yàn)椋?/p>

則該函數(shù)的解析式.

【解析】是偶函數(shù),則其圖象關(guān)于軸對(duì)稱,(不合題意)或

且值域?yàn)椋?/p>

考點(diǎn)三:指數(shù)函數(shù)與對(duì)數(shù)函數(shù)

指數(shù)函數(shù),對(duì)數(shù)函數(shù)是兩類重要的基本初等函數(shù),高考中既考查雙基,又考查對(duì)蘊(yùn)含其中的函數(shù)思想、等

價(jià)轉(zhuǎn)化、分類討論等思想方法的理解與運(yùn)用.因此應(yīng)做到能熟練掌握它們的圖象與性質(zhì)并能進(jìn)行一定的綜合

運(yùn)用.

例8、(2008山東文科高考試題)已知函數(shù)的圖象如圖所示,則滿足的關(guān)系是()

A.B.C.D.

【解析】:由圖易得取特殊點(diǎn)

.選A.

[點(diǎn)評(píng)]:本小題主要考查正確利用對(duì)數(shù)函數(shù)的圖象來比較大小。

例9、(2007全國(guó)I)設(shè),函數(shù)在區(qū)間上的最大值與最小值之差為,則()

A.B.C.D.

【解析】:設(shè),函數(shù)在區(qū)間上的最大值與最小值分別為

它們的差為,;.,4,選D。

例10、(2008全國(guó)II高考試題)若,則()

A.<<B.<<C.<<D.<<

【解析】:由,令且取知<<

考點(diǎn)四:反函數(shù)

反函數(shù)在高考試卷中一般為選擇題或填空題,難度不大。通常是求反函數(shù)或考察互為反函數(shù)的兩個(gè)函數(shù)

的性質(zhì)應(yīng)用和圖象關(guān)系。主要利用方法為:

互為反函數(shù)的兩個(gè)函數(shù)性質(zhì)之間的關(guān)系:注意:在定義域內(nèi)嚴(yán)格單調(diào)的函數(shù)必有反函數(shù),但存在反函數(shù)

的函數(shù)在定義域內(nèi)不一定嚴(yán)格單調(diào),如y=。

例11.(2007北京高考試題)函數(shù)的反函數(shù)的定義域?yàn)椋ǎ?/p>

A.B.C.D.

【解析】:函數(shù)的反函數(shù)的定義域?yàn)樵瘮?shù)的值域,原函數(shù)的值域?yàn)椋xB。

[點(diǎn)評(píng)]:本題考查互為反函數(shù)的兩個(gè)函數(shù)性質(zhì)之間的關(guān)系,即:反函數(shù)的定義域?yàn)樵瘮?shù)的值域。

例12、(2008湖南高考試題)設(shè)函數(shù)存在反函數(shù),且函數(shù)的圖象過點(diǎn)(L2),則函數(shù)的圖象一定過點(diǎn).

【解析】由函數(shù)的圖象過點(diǎn)Q,2)得:即函數(shù)過點(diǎn)則其反函數(shù)過點(diǎn)所以函數(shù)的圖象一定過點(diǎn)

[點(diǎn)評(píng)]:本題考查互為反函數(shù)的兩個(gè)函數(shù)的圖象之間的關(guān)系以及圖象的平移。

考點(diǎn)五:抽象函數(shù)

抽象函數(shù)是指沒有給出具體的函數(shù)解析式或圖像,只給出一些函數(shù)符號(hào)及其滿足的條件的函數(shù),如函數(shù)

的定義域,解析遞推式,特定點(diǎn)的函數(shù)值,特定的運(yùn)算性質(zhì)等,它是高中函數(shù)部分的難點(diǎn),也是大學(xué)高等數(shù)

學(xué)函數(shù)部分的一個(gè)銜接點(diǎn),由于抽象函數(shù)沒有具體的解析表達(dá)式作為載體,因此理解研究起來比較困難.但由

于此類試題即能考查函數(shù)的概念和性質(zhì),又能考查學(xué)生的思維能力,所以備受命題者的青睞,那么,怎樣求

解抽象函數(shù)問題呢,我們可以利用特殊模型法,函數(shù)性質(zhì)法,特殊化方法,聯(lián)想類比轉(zhuǎn)化法,等多種方法從

多角度,多層面去分析研究抽象函數(shù)問題,

(-)函數(shù)性質(zhì)法

函數(shù)的特征是通過其性質(zhì)(如奇偶性,單調(diào)性周期性,特殊點(diǎn)等)反應(yīng)出來的,抽象函數(shù)也是如此,只有

充分挖掘和利用題設(shè)條件和隱含的性質(zhì),靈活進(jìn)行等價(jià)轉(zhuǎn)化,抽象函數(shù)問題才能轉(zhuǎn)化,化難為易,常用的解

題方法有:1,利用奇偶性整體思考;2,利用單調(diào)性等價(jià)轉(zhuǎn)化;3,利用周期性回歸已知4;利用對(duì)稱性數(shù)形結(jié)合;5,

借助特殊點(diǎn),布列方程等.

(二)特殊化方法

1、在求解函數(shù)解析式或研究函數(shù)性質(zhì)時(shí),一般用代換的方法,將x換成-x等

2、在求函數(shù)值時(shí),可用特殊值代入

3、研究抽象函數(shù)的具體模型,用具體模型解選擇題,填空題,或由具體模型函數(shù)對(duì)綜合題,的解答提

供思路和方法.

總之,抽象函數(shù)問題求解,用常規(guī)方法一般很難湊效,但我們?nèi)绻芡ㄟ^對(duì)題目的信息分析與研究,采

用特殊的方法和手段求解,往往會(huì)收到事半功倍之功效,真有些山窮水復(fù)疑無路,柳暗花明又一村的快感.

例13、(2008陜西文)定義在上的函數(shù)滿足(),,則等于()

A.2B.3C.6D.9

?

令得

考點(diǎn)六:函數(shù)的綜合應(yīng)用(導(dǎo)數(shù)的應(yīng)用)

函數(shù)的綜合運(yùn)用主要是指運(yùn)用函數(shù)的知識(shí)、思想和方法綜合解決問題.函數(shù)描述了自然界中量的依存關(guān)

系,是對(duì)問題本身的數(shù)量本質(zhì)特征和制約關(guān)系的一種刻畫,用聯(lián)系和變化的觀點(diǎn)提出數(shù)學(xué)對(duì)象,抽象其數(shù)學(xué)

特征,建立函數(shù)關(guān)系.因此,運(yùn)動(dòng)變化、相互聯(lián)系、相互制約是函數(shù)思想的精髓,掌握有關(guān)函數(shù)知識(shí)是運(yùn)用

函數(shù)思想的前提,提高用初等數(shù)學(xué)思想方法研究函數(shù)的能力,樹立運(yùn)用函數(shù)思想解決有關(guān)數(shù)學(xué)問題的意識(shí)是

運(yùn)用函數(shù)思想的關(guān)鍵.

例14、(2008廣東高考試題)某單位用2160萬元購(gòu)得一塊空地,計(jì)劃在該地塊上建造一棟至少

10層、每層2000平方米的樓房。經(jīng)測(cè)算如果將樓房建為乂X10層則每平方米的平均建筑費(fèi)用為560+48X

(單位:元)。為了使樓房每平方米的平均綜合費(fèi)用最少,該樓房應(yīng)建為多少層?

(注:平均綜合費(fèi)用=平均建筑費(fèi)用+平均購(gòu)地費(fèi)用,平均購(gòu)地費(fèi)用=)

【解析】:設(shè)樓房每平方米的平均綜合費(fèi)為元,依題意得

則,令,即,解得

當(dāng)時(shí),;當(dāng)時(shí),,因此,當(dāng)時(shí),取得最小值,元.

答:為了使樓房每平方米的平均綜合費(fèi)最少,該樓房應(yīng)建為15層。

[點(diǎn)評(píng)]:這是一題應(yīng)用題,利用函數(shù)與導(dǎo)數(shù)的知識(shí)來解決問題。利用導(dǎo)數(shù),求函數(shù)的單調(diào)性、求函數(shù)

值域或最值是一種常用的方法.

例15、(2007湖北文科高考試題)某商品每件成本9元,售價(jià)為30元,每星期賣出432件如果

降低價(jià)格,銷售量可以增加,且每星期多賣出的商品件數(shù)與商品單價(jià)的降低值(單位:元,)的平方成正比.

已知商品單價(jià)降低2元時(shí),一星期多賣出24件.

(I)將一個(gè)星期的商品銷售利潤(rùn)表示成的函數(shù);

(II)如何定價(jià)才能使一個(gè)星期的商品銷售利潤(rùn)最大?

【解析】:(I)設(shè)商品降價(jià)元,則多賣的商品數(shù)為,若記商品在一個(gè)星期的獲利為,

則依題意有,

又由已知條件,,于是有,

所以.

(n)根據(jù)(I),我們有.

2

12

0

0

極小

極大

故時(shí),達(dá)到極大值.因?yàn)椋?/p>

所以定價(jià)為元能使一個(gè)星期的商品銷售利潤(rùn)最大.

[點(diǎn)評(píng)]:本小題主要考查根據(jù)實(shí)際問題建立數(shù)學(xué)模型,以及運(yùn)用函數(shù)、導(dǎo)數(shù)的知識(shí)解決實(shí)際問題的能

力.

考點(diǎn)七、函數(shù)的零點(diǎn)

四、方法總結(jié)與高考預(yù)測(cè)

(-)思想方法總結(jié)

1.數(shù)形結(jié)合2.分類討論3.函數(shù)與方程

(二)高考預(yù)測(cè)

1.考查有關(guān)函數(shù)單調(diào)性和奇偶性的試題,從試題上看,抽象函數(shù)和具體函數(shù)都有,有向抽象函數(shù)發(fā)展的

趨勢(shì),另外試題注重對(duì)轉(zhuǎn)化思想的考查,且都綜合地考查單調(diào)性與奇偶性.

2.考查與函數(shù)圖象有關(guān)的試題,要從圖中(或列表中)讀取各種信息,注意利用平移變換、伸縮變換、

對(duì)稱變換,注意函數(shù)的對(duì)稱性、函數(shù)值的變化趨勢(shì),培養(yǎng)運(yùn)用數(shù)形結(jié)合思想來解題的能力.

3.考查與指數(shù)函數(shù)和對(duì)數(shù)函數(shù)有關(guān)的試題.對(duì)指數(shù)函數(shù)與對(duì)數(shù)函數(shù)的考查,大多以基本函數(shù)的性質(zhì)為依

托,結(jié)合運(yùn)算推理來解決.

4加強(qiáng)函數(shù)思想、轉(zhuǎn)化思想的考查是高考的一個(gè)重點(diǎn).善于轉(zhuǎn)化命題,引進(jìn)變量建立函數(shù),運(yùn)用變化的方

法、觀點(diǎn)解決數(shù)學(xué)試題以提高數(shù)學(xué)意識(shí),發(fā)展能力.

5、注意與導(dǎo)數(shù)結(jié)合考查函數(shù)的性質(zhì).

6、函數(shù)的應(yīng)用,是與實(shí)際生活結(jié)

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請(qǐng)下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請(qǐng)聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會(huì)有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲(chǔ)空間,僅對(duì)用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對(duì)用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對(duì)任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請(qǐng)與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時(shí)也不承擔(dān)用戶因使用這些下載資源對(duì)自己和他人造成任何形式的傷害或損失。

評(píng)論

0/150

提交評(píng)論