




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省咸寧二中學2023-2024學年中考數學最后沖刺模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.從甲、乙、丙、丁四人中選一人參加詩詞大會比賽,經過三輪初賽,他們的平均成績都是86.5分,方差分別是S甲2=1.5,S乙2=2.6,S丙2=3.5,S丁2=3.68,你認為派誰去參賽更合適()A.甲 B.乙 C.丙 D.丁2.已知某校女子田徑隊23人年齡的平均數和中位數都是13歲,但是后來發現其中一位同學的年齡登記錯誤,將14歲寫成15歲,經重新計算后,正確的平均數為a歲,中位數為b歲,則下列結論中正確的是()A.a<13,b=13B.a<13,b<13C.a>13,b<13D.a>13,b=133.如圖:在中,平分,平分,且交于,若,則等于()A.75 B.100 C.120 D.1254.某學校舉行一場知識競賽活動,競賽共有4小題,每小題5分,答對給5分,答錯或不答給0分,在該學校隨機抽取若干同學參加比賽,成績被制成不完整的統計表如下.成績人數(頻數)百分比(頻率)050.2105150.42050.1根據表中已有的信息,下列結論正確的是()A.共有40名同學參加知識競賽B.抽到的同學參加知識競賽的平均成績為10分C.已知該校共有800名學生,若都參加競賽,得0分的估計有100人D.抽到同學參加知識競賽成績的中位數為15分5.如圖,直線AB與半徑為2的⊙O相切于點C,D是⊙O上一點,且∠EDC=30°,弦EF∥AB,則EF的長度為()A.2 B.2 C. D.26.如下字體的四個漢字中,是軸對稱圖形的是()A. B. C. D.7.如圖,△OAB∽△OCD,OA:OC=3:2,∠A=α,∠C=β,△OAB與△OCD的面積分別是S1和S2,△OAB與△OCD的周長分別是C1和C2,則下列等式一定成立的是()A. B. C. D.8.在一個不透明的口袋中裝有4個紅球和若干個白球,他們除顏色外其他完全相同.通過多次摸球實驗后發現,摸到紅球的頻率穩定在25%附近,則口袋中白球可能有()A.16個 B.15個 C.13個 D.12個9.PM2.5是大氣壓中直徑小于或等于0.0000025m的顆粒物,將0.0000025用科學記數法表示為()A.0.25×10﹣5 B.0.25×10﹣6 C.2.5×10﹣5 D.2.5×10﹣610.四個有理數﹣1,2,0,﹣3,其中最小的是()A.﹣1B.2C.0D.﹣3二、填空題(共7小題,每小題3分,滿分21分)11.拋物線y=2x2+3x+k﹣2經過點(﹣1,0),那么k=_____.12.如圖,在正方形ABCD中,E是AB上一點,BE=2,AE=3BE,P是AC上一動點,則PB+PE的最小值是.13.計算:-=________.14.定義:在平面直角坐標系xOy中,把從點P出發沿縱或橫方向到達點Q(至多拐一次彎)的路徑長稱為P,Q的“實際距離”.如圖,若P(﹣1,1),Q(2,3),則P,Q的“實際距離”為1,即PS+SQ=1或PT+TQ=1.環保低碳的共享單車,正式成為市民出行喜歡的交通工具.設A,B,C三個小區的坐標分別為A(3,1),B(1,﹣3),C(﹣1,﹣1),若點M表示單車停放點,且滿足M到A,B,C的“實際距離”相等,則點M的坐標為_____.15.用48米長的竹籬笆在空地上,圍成一個綠化場地,現有兩種設計方案,一種是圍成正方形的場地;另一種是圍成圓形場地.現請你選擇,圍成________(圓形、正方形兩者選一)場在面積較大.16.將多項式xy2﹣4xy+4y因式分解:_____.17.如圖,P(m,m)是反比例函數在第一象限內的圖象上一點,以P為頂點作等邊△PAB,使AB落在x軸上,則△POB的面積為_____.三、解答題(共7小題,滿分69分)18.(10分)工人小王生產甲、乙兩種產品,生產產品件數與所用時間之間的關系如表:生產甲產品件數(件)生產乙產品件數(件)所用總時間(分鐘)10103503020850(1)小王每生產一件甲種產品和每生產一件乙種產品分別需要多少分鐘?(2)小王每天工作8個小時,每月工作25天.如果小王四月份生產甲種產品a件(a為正整數).①用含a的代數式表示小王四月份生產乙種產品的件數;②已知每生產一件甲產品可得1.50元,每生產一件乙種產品可得2.80元,若小王四月份的工資不少于1500元,求a的取值范圍.19.(5分)已知:如圖,AB為⊙O的直徑,AB=AC,BC交⊙O于點D,DE⊥AC于E.(1)求證:DE為⊙O的切線;(2)G是ED上一點,連接BE交圓于F,連接AF并延長交ED于G.若GE=2,AF=3,求EF的長.20.(8分)在□ABCD中,E為BC邊上一點,且AB=AE,求證:AC=DE。21.(10分)P是外一點,若射線PC交于點A,B兩點,則給出如下定義:若,則點P為的“特征點”.當的半徑為1時.在點、、中,的“特征點”是______;點P在直線上,若點P為的“特征點”求b的取值范圍;的圓心在x軸上,半徑為1,直線與x軸,y軸分別交于點M,N,若線段MN上的所有點都不是的“特征點”,直接寫出點C的橫坐標的取值范圍.22.(10分)某區教育局為了解今年九年級學生體育測試情況,隨機抽查了某班學生的體育測試成績為樣本,按A、B、C、D四個等級進行統計,并將統計結果繪制成如下的統計圖,請你結合圖中所給信息解答下列問題:說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下(1)樣本中D級的學生人數占全班學生人數的百分比是;(2)扇形統計圖中A級所在的扇形的圓心角度數是;(3)請把條形統計圖補充完整;(4)若該校九年級有500名學生,請你用此樣本估計體育測試中A級和B級的學生人數之和.23.(12分)拋物線經過A(-1,0)、C(0,-3)兩點,與x軸交于另一點B.求此拋物線的解析式;已知點D在第四象限的拋物線上,求點D關于直線BC對稱的點D’的坐標;在(2)的條件下,連結BD,問在x軸上是否存在點P,使,若存在,請求出P點的坐標;若不存在,請說明理由.24.(14分)如圖,矩形ABCD中,AB>AD,把矩形沿對角線AC所在直線折疊,使點B落在點E處,AE交CD于點F,連接DE,求證:∠DAE=∠ECD.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
根據方差的概念進行解答即可.【詳解】由題意可知甲的方差最小,則應該選擇甲.故答案為A.【點睛】本題考查了方差,解題的關鍵是掌握方差的定義進行解題.2、A【解析】試題解析:∵原來的平均數是13歲,∴13×23=299(歲),∴正確的平均數a=299-12∵原來的中位數13歲,將14歲寫成15歲,最中間的數還是13歲,∴b=13;故選A.考點:1.平均數;2.中位數.3、B【解析】
根據角平分線的定義推出△ECF為直角三角形,然后根據勾股定理即可求得CE2+CF2=EF2,進而可求出CE2+CF2的值.【詳解】解:∵CE平分∠ACB,CF平分∠ACD,∴∠ACE=∠ACB,∠ACF=∠ACD,即∠ECF=(∠ACB+∠ACD)=90°,∴△EFC為直角三角形,
又∵EF∥BC,CE平分∠ACB,CF平分∠ACD,
∴∠ECB=∠MEC=∠ECM,∠DCF=∠CFM=∠MCF,
∴CM=EM=MF=5,EF=10,
由勾股定理可知CE2+CF2=EF2=1.
故選:B.【點睛】本題考查角平分線的定義(從一個角的頂點引出一條射線,把這個角分成兩個完全相同的角,這條射線叫做這個角的角平分線),直角三角形的判定(有一個角為90°的三角形是直角三角形)以及勾股定理的運用,解題的關鍵是首先證明出△ECF為直角三角形.4、B【解析】
根據頻數÷頻率=總數可求出參加人數,根據分別求出5分、15分、0分的人數,即可求出平均分,根據0分的頻率即可求出800人中0分的人數,根據中位數的定義求出中位數,對選項進行判斷即可.【詳解】∵5÷0.1=50(名),有50名同學參加知識競賽,故選項A錯誤;∵成績5分、15分、0分的同學分別有:50×0.2=10(名),50×0.4=20(名),50﹣10﹣5﹣20﹣5=10(名)∴抽到的同學參加知識競賽的平均成績為:=10,故選項B正確;∵0分同學10人,其頻率為0.2,∴800名學生,得0分的估計有800×0.2=160(人),故選項C錯誤;∵第25、26名同學的成績為10分、15分,∴抽到同學參加知識競賽成績的中位數為12.5分,故選項D錯誤.故選:B.【點睛】本題考查利用頻率估算概率,平均數及中位數的定義,熟練掌握相關知識是解題關鍵.5、B【解析】本題考查的圓與直線的位置關系中的相切.連接OC,EC所以∠EOC=2∠D=60°,所以△ECO為等邊三角形.又因為弦EF∥AB所以OC垂直EF故∠OEF=30°所以EF=OE=2.6、A【解析】試題分析:根據軸對稱圖形的意義:如果一個圖形沿著一條直線對折后兩部分完全重合,這樣的圖形叫做軸對稱圖形,這條直線叫做對稱軸;據此可知,A為軸對稱圖形.故選A.考點:軸對稱圖形7、D【解析】A選項,在△OAB∽△OCD中,OB和CD不是對應邊,因此它們的比值不一定等于相似比,所以A選項不一定成立;B選項,在△OAB∽△OCD中,∠A和∠C是對應角,因此,所以B選項不成立;C選項,因為相似三角形的面積比等于相似比的平方,所以C選項不成立;D選項,因為相似三角形的周長比等于相似比,所以D選項一定成立.故選D.8、D【解析】
由摸到紅球的頻率穩定在25%附近得出口袋中得到紅色球的概率,進而求出白球個數即可.【詳解】解:設白球個數為:x個,
∵摸到紅色球的頻率穩定在25%左右,
∴口袋中得到紅色球的概率為25%,
∴,
解得:x=12,
經檢驗x=12是原方程的根,
故白球的個數為12個.
故選:D.【點睛】本題考查了利用頻率估計概率,根據大量反復試驗下頻率穩定值即概率得出是解題的關鍵.9、D【解析】
根據科學記數法的定義,科學記數法的表示形式為a×10n,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.在確定n的值時,看該數是大于或等于1還是小于1.當該數大于或等于1時,n為它的整數位數減1;當該數小于1時,-n為它第一個有效數字前0的個數(含小數點前的1個0).【詳解】解:0.0000025第一個有效數字前有6個0(含小數點前的1個0),從而.故選D.10、D【解析】解:∵-1<-1<0<2,∴最小的是-1.故選D.二、填空題(共7小題,每小題3分,滿分21分)11、3.【解析】試題解析:把(-1,0)代入得:2-3+k-2=0,解得:k=3.故答案為3.12、10【解析】
由正方形性質的得出B、D關于AC對稱,根據兩點之間線段最短可知,連接DE,交AC于P,連接BP,則此時PB+PE的值最小,進而利用勾股定理求出即可.【詳解】如圖,連接DE,交AC于P,連接BP,則此時PB+PE的值最小.∵四邊形ABCD是正方形,∴B、D關于AC對稱,∴PB=PD,∴PB+PE=PD+PE=DE.∵BE=2,AE=3BE,∴AE=6,AB=8,∴DE==10,故PB+PE的最小值是10.故答案為10.13、2【解析】試題解析:原式故答案為14、(1,﹣2).【解析】
若設M(x,y),則由題目中對“實際距離”的定義可得方程組:3-x+1-y=y+1+x+1=1-x+3+y,解得:x=1,y=-2,則M(1,-2).故答案為(1,-2).15、圓形【解析】
根據竹籬笆的長度可知所圍成的正方形的邊長,進而可計算出所圍成的正方形的面積;根據圓的周長公式,可知所圍成的圓的半徑,進而將圓的面積計算出來,兩者進行比較.【詳解】圍成的圓形場地的面積較大.理由如下:設正方形的邊長為a,圓的半徑為R,∵竹籬笆的長度為48米,∴4a=48,則a=1.即所圍成的正方形的邊長為1;2π×R=48,∴R=,即所圍成的圓的半徑為,∴正方形的面積S1=a2=144,圓的面積S2=π×()2=,∵144<,∴圍成的圓形場地的面積較大.故答案為:圓形.【點睛】此題主要考查實數的大小的比較在實際生活中的應用,所以學生在學這一部分時一定要聯系實際,不能死學.16、y(xy﹣4x+4)【解析】
直接提公因式y即可解答.【詳解】xy2﹣4xy+4y=y(xy﹣4x+4).故答案為:y(xy﹣4x+4).【點睛】本題考查了因式分解——提公因式法,確定多項式xy2﹣4xy+4y的公因式為y是解決問題的關鍵.17、.【解析】
如圖,過點P作PH⊥OB于點H,∵點P(m,m)是反比例函數y=在第一象限內的圖象上的一個點,∴9=m2,且m>0,解得,m=3.∴PH=OH=3.∵△PAB是等邊三角形,∴∠PAH=60°.∴根據銳角三角函數,得AH=.∴OB=3+∴S△POB=OB?PH=.三、解答題(共7小題,滿分69分)18、(1)小王每生產一件甲種產品和每生產一件乙種產品分別需要15分鐘、20分鐘;(2)①600-;②a≤1.【解析】
(1)設生產一件甲種產品和每生產一件乙種產品分別需要x分鐘、y分鐘,根據圖示可得:生產10件甲產品,10件乙產品用時350分鐘,生產30件甲產品,20件乙產品,用時850分鐘,列方程組求解;(2)①根據生產一件甲種產品和每生產一件乙種產品分別需要的時間關系即可表示出結果;②根據“小王四月份的工資不少于1500元”即可列出不等式.【詳解】(1)設生產一件甲種產品需x分鐘,生產一件乙種產品需y分鐘,由題意得:,解這個方程組得:,答:小王每生產一件甲種產品和每生產一件乙種產品分別需要15分鐘、20分鐘;(2)①∵生產一件甲種產品需15分鐘,生產一件乙種產品需20分鐘,∴一小時生產甲產品4件,生產乙產品3件,所以小王四月份生產乙種產品的件數:3(25×8﹣)=600-;②依題意:1.5a+2.8(600-)≥1500,1680﹣0.6a≥1500,解得:a≤1.【點睛】本題考查了二元一次方程組的應用、一元一次不等式的應用,正確理解題意,找準題中的等量關系列出方程組、不等關系列出不等式是解題的關鍵.19、(1)見解析;(2)∠EAF的度數為30°【解析】
(1)連接OD,如圖,先證明OD∥AC,再利用DE⊥AC得到OD⊥DE,然后根據切線的判定定理得到結論;(2)利用圓周角定理得到∠AFB=90°,再證明Rt△GEF∽△Rt△GAE,利用相似比得到于是可求出GF=1,然后在Rt△AEG中利用正弦定義求出∠EAF的度數即可.【詳解】(1)證明:連接OD,如圖,∵OB=OD,∴∠OBD=∠ODB,∵AB=AC,∴∠ABC=∠C,∴∠ODB=∠C,∴OD∥AC,∵DE⊥AC,∴OD⊥DE,∴DE為⊙O的切線;(2)解:∵AB為直徑,∴∠AFB=90°,∵∠EGF=∠AGF,∴Rt△GEF∽△Rt△GAE,∴,即整理得GF2+3GF﹣4=0,解得GF=1或GF=﹣4(舍去),在Rt△AEG中,sin∠EAG∴∠EAG=30°,即∠EAF的度數為30°.【點睛】本題考查了切線的性質:經過半徑的外端且垂直于這條半徑的直線是圓的切線;圓的切線垂直于經過切點的半徑.判定切線時“連圓心和直線與圓的公共點”或“過圓心作這條直線的垂線”;有切線時,常常“遇到切點連圓心得半徑”.也考查了圓周角定理.20、見解析【解析】
在ABC和EAD中已經有一條邊和一個角分別相等,根據平行的性質和等邊對等角得出∠B=∠DAE證得ABC≌EAD,繼而證得AC=DE.【詳解】∵四邊形ABCD為平行四邊形,∴AD∥BC,AD=BC,∴∠DAE=∠AEB.∵AB=AE,∴∠AEB=∠B.∴∠B=∠DAE.∵在△ABC和△AED中,,∴△ABC≌△EAD(SAS),∴AC=DE.【點睛】本題主要考查了平行四邊形的基本性質和全等三角形的判定及性質,判定兩個三角形全等的一般方法有:SSS、SAS、ASA、AAS、HL.21、(1)①、;②(2)或,.【解析】
據若,則點P為的“特征點”,可得答案;根據若,則點P為的“特征點”,可得,根據等腰直角三角形的性質,可得答案;根據垂線段最短,可得PC最短,根據等腰直角三角形的性質,可得,根據若,則點P為的“特征點”,可得答案.【詳解】解:,,點是的“特征點”;,,點是的“特征點”;,,點不是的“特征點”;故答案為、如圖1,在上,若存在的“特征點”點P,點O到直線的距離.直線交y軸于點E,過O作直線于點H.因為.在中,可知.可得同理可得.的取值范圍是:如圖2,設C點坐標為,直線,.,,,..,線段MN上的所有點都不是的“特征點”,,即,解得或,點C的橫坐標的取值范圍是或,.故答案為:(1)①、;②(2)或,.【點睛】本題考查一次函數綜合題,解的關鍵是利用若,則點P為的“特征點”;解的關鍵是利用等腰直角三角形的性質得出OE的長;解的關鍵是利用等腰直角三角形的性質得出,又利用了.22、(1)10%;(2)72;(3)5,見解析;(4)330.【解析】
解:(1)根據題意得:
D級的學生人數占全班人數的百分比是:
1-20%-46%-24%=10%;
(2)A級所在的扇形的圓心角度數是:20%×360°=72°;
(3)∵A等人數為10人,所占比例為20%,
∴抽查的學生數=10÷20%=50(人),
∴D級的學生人數是50×10%=5(人),
補圖如下:
(4)根據題意得:
體育測試中A級和B級的學生人數之和是:500×(20%+46%)=330(名),
答:體育測試中A級和B級的學生人數之和是330名.【點睛】本題考查統計的知識,要求考生會識別條形統計圖和扇形統計圖.23、(1)(2)(0,-1)(3)(1,0)(9,0)【解析】
(1)將A(?1,0)、C(0,?3)兩點坐標代入拋物線y=ax2+bx?3a中,列方程組求a、b的值即可;(2)將點D(m,?m?1)代入(1)中的拋物線解析式,求m的值,再根據對稱性求點D關于直線BC對稱的點D'的坐標;(3)分兩種情
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025學年度高等教育責任督學計劃
- 數字化轉型制造業數據治理與數據治理技術創新報告
- BIM技術在2025年建筑工程綠色施工中的應用與創新報告
- 2025年人教版一年級數學下冊家長溝通計劃
- 小學課后藝術展覽活動計劃
- 2025年能源與資源行業能源效率提升關鍵技術研究報告
- 2025年工業互聯網平臺微服務架構性能測試:性能優化與產業融合報告
- 蘇教版數學評估與反饋計劃
- 交通事故應急處理流程與管理職責
- 新人教版小學二年級音樂課程安排
- 建平磷鐵礦業有限公司磷(含磁鐵磷灰石)礦礦山地質環境保護與土地復墾方案
- DB22∕T 3181-2020 公路水路行業安全生產風險分級管控和隱患排查治理雙重預防機制建設通用規范
- GB/T 36713-2018能源管理體系能源基準和能源績效參數
- GB/T 25068.1-2020信息技術安全技術網絡安全第1部分:綜述和概念
- “二級甲等婦幼保健院”評審匯報材料
- 《狼王夢》讀書分享PPT
- 三年級美術下冊第10課《快樂的節日》優秀課件1人教版
- 電力市場交易模式
- 第四課《單色版畫》 課件
- 門診手術麻醉原則課件
- 自動噴水滅火系統質量驗收項目缺陷判定記錄
評論
0/150
提交評論