




版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進行舉報或認領(lǐng)
文檔簡介
2025年江西省南昌二中、九江一中、新余一中、臨川一中八所重點中學高三5月教學測評數(shù)學試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內(nèi),不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內(nèi),第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結(jié)束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.函數(shù),,則“的圖象關(guān)于軸對稱”是“是奇函數(shù)”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件2.已知滿足,則()A. B. C. D.3.已知函數(shù),其中,記函數(shù)滿足條件:為事件,則事件發(fā)生的概率為A. B.C. D.4.已知,則的大小關(guān)系為A. B. C. D.5.下列不等式成立的是()A. B. C. D.6.已知,則的值構(gòu)成的集合是()A. B. C. D.7.已知定義在上的函數(shù)滿足,且在上是增函數(shù),不等式對于恒成立,則的取值范圍是A. B. C. D.8.函數(shù)在上的最大值和最小值分別為()A.,-2 B.,-9 C.-2,-9 D.2,-29.如圖所示,網(wǎng)格紙上小正方形的邊長為1,粗線畫出的是某幾何體的三視圖,則該幾何體的體積是()A. B. C. D.810.已知函數(shù),,,,則,,的大小關(guān)系為()A. B. C. D.11.已知,若對任意,關(guān)于x的不等式(e為自然對數(shù)的底數(shù))至少有2個正整數(shù)解,則實數(shù)a的取值范圍是()A. B. C. D.12.設(shè)為等差數(shù)列的前項和,若,,則的最小值為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數(shù)列{an}的前n項和為Sn,向量(4,﹣n),(Sn,n+3).若⊥,則數(shù)列{}前2020項和為_____14.在平面直角坐標系中,若函數(shù)在處的切線與圓存在公共點,則實數(shù)的取值范圍為_____.15.執(zhí)行以下語句后,打印紙上打印出的結(jié)果應(yīng)是:_____.16.若函數(shù)的圖像上存在點,滿足約束條件,則實數(shù)的最大值為__________.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(12分)已知函數(shù).(1)若,求不等式的解集;(2)若“,”為假命題,求的取值范圍.18.(12分)設(shè)等差數(shù)列滿足,.(1)求數(shù)列的通項公式;(2)求的前項和及使得最小的的值.19.(12分)班主任為了對本班學生的考試成績進行分析,決定從本班24名女同學,18名男同學中隨機抽取一個容量為7的樣本進行分析.(1)如果按照性別比例分層抽樣,可以得到多少個不同的樣本?(寫出算式即可,不必計算出結(jié)果)(2)如果隨機抽取的7名同學的數(shù)學,物理成績(單位:分)對應(yīng)如下表:學生序號1234567數(shù)學成績60657075858790物理成績70778085908693①若規(guī)定85分以上(包括85分)為優(yōu)秀,從這7名同學中抽取3名同學,記3名同學中數(shù)學和物理成績均為優(yōu)秀的人數(shù)為,求的分布列和數(shù)學期望;②根據(jù)上表數(shù)據(jù),求物理成績關(guān)于數(shù)學成績的線性回歸方程(系數(shù)精確到0.01);若班上某位同學的數(shù)學成績?yōu)?6分,預(yù)測該同學的物理成績?yōu)槎嗌俜郑扛剑壕€性回歸方程,其中,.768381252620.(12分)在①,②,③這三個條件中任選一個,補充在下面問題中,求的面積的值(或最大值).已知的內(nèi)角,,所對的邊分別為,,,三邊,,與面積滿足關(guān)系式:,且,求的面積的值(或最大值).21.(12分)已知等差數(shù)列中,,數(shù)列的前項和.(1)求;(2)若,求的前項和.22.(10分)的內(nèi)角,,的對邊分別為,,已知,.(1)求;(2)若的面積,求.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.B【解析】
根據(jù)函數(shù)奇偶性的性質(zhì),結(jié)合充分條件和必要條件的定義進行判斷即可.【詳解】設(shè),若函數(shù)是上的奇函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對稱.所以,“是奇函數(shù)”“的圖象關(guān)于軸對稱”;若函數(shù)是上的偶函數(shù),則,所以,函數(shù)的圖象關(guān)于軸對稱.所以,“的圖象關(guān)于軸對稱”“是奇函數(shù)”.因此,“的圖象關(guān)于軸對稱”是“是奇函數(shù)”的必要不充分條件.故選:B.本題主要考查充分條件和必要條件的判斷,結(jié)合函數(shù)奇偶性的性質(zhì)判斷是解決本題的關(guān)鍵,考查推理能力,屬于中等題.2.A【解析】
利用兩角和與差的余弦公式展開計算可得結(jié)果.【詳解】,.故選:A.本題考查三角求值,涉及兩角和與差的余弦公式的應(yīng)用,考查計算能力,屬于基礎(chǔ)題.3.D【解析】
由得,分別以為橫縱坐標建立如圖所示平面直角坐標系,由圖可知,.4.D【解析】
分析:由題意結(jié)合對數(shù)的性質(zhì),對數(shù)函數(shù)的單調(diào)性和指數(shù)的性質(zhì)整理計算即可確定a,b,c的大小關(guān)系.詳解:由題意可知:,即,,即,,即,綜上可得:.本題選擇D選項.點睛:對于指數(shù)冪的大小的比較,我們通常都是運用指數(shù)函數(shù)的單調(diào)性,但很多時候,因冪的底數(shù)或指數(shù)不相同,不能直接利用函數(shù)的單調(diào)性進行比較.這就必須掌握一些特殊方法.在進行指數(shù)冪的大小比較時,若底數(shù)不同,則首先考慮將其轉(zhuǎn)化成同底數(shù),然后再根據(jù)指數(shù)函數(shù)的單調(diào)性進行判斷.對于不同底而同指數(shù)的指數(shù)冪的大小的比較,利用圖象法求解,既快捷,又準確.5.D【解析】
根據(jù)指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)的單調(diào)性和正余弦函數(shù)的圖象可確定各個選項的正誤.【詳解】對于,,,錯誤;對于,在上單調(diào)遞減,,錯誤;對于,,,,錯誤;對于,在上單調(diào)遞增,,正確.故選:.本題考查根據(jù)初等函數(shù)的單調(diào)性比較大小的問題;關(guān)鍵是熟練掌握正余弦函數(shù)圖象、指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù)的單調(diào)性.6.C【解析】
對分奇數(shù)、偶數(shù)進行討論,利用誘導(dǎo)公式化簡可得.【詳解】為偶數(shù)時,;為奇數(shù)時,,則的值構(gòu)成的集合為.本題考查三角式的化簡,誘導(dǎo)公式,分類討論,屬于基本題.7.A【解析】
根據(jù)奇偶性定義和性質(zhì)可判斷出函數(shù)為偶函數(shù)且在上是減函數(shù),由此可將不等式化為;利用分離變量法可得,求得的最大值和的最小值即可得到結(jié)果.【詳解】為定義在上的偶函數(shù),圖象關(guān)于軸對稱又在上是增函數(shù)在上是減函數(shù),即對于恒成立在上恒成立,即的取值范圍為:本題正確選項:本題考查利用函數(shù)的奇偶性和單調(diào)性求解函數(shù)不等式的問題,涉及到恒成立問題的求解;解題關(guān)鍵是能夠利用函數(shù)單調(diào)性將函數(shù)值的大小關(guān)系轉(zhuǎn)化為自變量的大小關(guān)系,從而利用分離變量法來處理恒成立問題.8.B【解析】
由函數(shù)解析式中含絕對值,所以去絕對值并畫出函數(shù)圖象,結(jié)合圖象即可求得在上的最大值和最小值.【詳解】依題意,,作出函數(shù)的圖象如下所示;由函數(shù)圖像可知,當時,有最大值,當時,有最小值.故選:B.本題考查了絕對值函數(shù)圖象的畫法,由函數(shù)圖象求函數(shù)的最值,屬于基礎(chǔ)題.9.A【解析】
由三視圖還原出原幾何體,得出幾何體的結(jié)構(gòu)特征,然后計算體積.【詳解】由三視圖知原幾何體是一個四棱錐,四棱錐底面是邊長為2的正方形,高為2,直觀圖如圖所示,.故選:A.本題考查三視圖,考查棱錐的體積公式,掌握基本幾何體的三視圖是解題關(guān)鍵.10.B【解析】
可判斷函數(shù)在上單調(diào)遞增,且,所以.【詳解】在上單調(diào)遞增,且,所以.故選:B本題主要考查了函數(shù)單調(diào)性的判定,指數(shù)函數(shù)與對數(shù)函數(shù)的性質(zhì),利用單調(diào)性比大小等知識,考查了學生的運算求解能力.11.B【解析】
構(gòu)造函數(shù)(),求導(dǎo)可得在上單調(diào)遞增,則,問題轉(zhuǎn)化為,即至少有2個正整數(shù)解,構(gòu)造函數(shù),,通過導(dǎo)數(shù)研究單調(diào)性,由可知,要使得至少有2個正整數(shù)解,只需即可,代入可求得結(jié)果.【詳解】構(gòu)造函數(shù)(),則(),所以在上單調(diào)遞增,所以,故問題轉(zhuǎn)化為至少存在兩個正整數(shù)x,使得成立,設(shè),,則,當時,單調(diào)遞增;當時,單調(diào)遞增.,整理得.故選:B.本題考查導(dǎo)數(shù)在判斷函數(shù)單調(diào)性中的應(yīng)用,考查不等式成立問題中求解參數(shù)問題,考查學生分析問題的能力和邏輯推理能力,難度較難.12.C【解析】
根據(jù)已知條件求得等差數(shù)列的通項公式,判斷出最小時的值,由此求得的最小值.【詳解】依題意,解得,所以.由解得,所以前項和中,前項的和最小,且.故選:C本小題主要考查等差數(shù)列通項公式和前項和公式的基本量計算,考查等差數(shù)列前項和最值的求法,屬于基礎(chǔ)題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由已知可得?4Sn﹣n(n+3)=0,可得Sn,n=1時,a1=S1=1.當n≥2時,an=Sn﹣Sn﹣1.可得:2().利用裂項求和方法即可得出.【詳解】∵⊥,∴?4Sn﹣n(n+3)=0,∴Sn,n=1時,a1=S1=1.當n≥2時,an=Sn﹣Sn﹣1.,滿足上式,.∴2().∴數(shù)列{}前2020項和為2(1)=2(1).故答案為:.本題考查了向量垂直與數(shù)量積的關(guān)系、數(shù)列遞推關(guān)系、裂項求和方法,考查了推理能力與計算能力,屬于中檔題.14.【解析】
利用導(dǎo)數(shù)的幾何意義可求得函數(shù)在處的切線,再根據(jù)切線與圓存在公共點,利用圓心到直線的距離滿足的條件列式求解即可.【詳解】解:由條件得到又所以函數(shù)在處的切線為,即圓方程整理可得:即有圓心且所以圓心到直線的距離,即.解得或,故答案為:.本題主要考查了導(dǎo)數(shù)的幾何意義求解切線方程的問題,同時也考查了根據(jù)直線與圓的位置關(guān)系求解參數(shù)范圍的問題,屬于基礎(chǔ)題.15.1【解析】
根據(jù)程序框圖直接計算得到答案.【詳解】程序在運行過程中各變量的取值如下所示:是否繼續(xù)循環(huán)ix循環(huán)前14第一圈是44+2第二圈是74+2+8第三圈是104+2+8+14退出循環(huán),所以打印紙上打印出的結(jié)果應(yīng)是:1故答案為:1.本題考查了程序框圖,意在考查學生的計算能力和理解能力.16.1【解析】由題知x>0,且滿足約束條件的圖象為由圖可知當與交于點B(2,1),當直線過B點時,m取得最大值為1.點睛:線性規(guī)劃的實質(zhì)是把代數(shù)問題幾何化,即數(shù)形結(jié)合的思想.需要注意的是:一、準確無誤地作出可行域;二、畫標準函數(shù)所對應(yīng)的直線時,要注意與約束條件中的直線的斜率進行比較,避免出錯;三、一般情況下,目標函數(shù)的最大或最小會在可行域的端點或邊界上取得.三、解答題:共70分。解答應(yīng)寫出文字說明、證明過程或演算步驟。17.(1)(2)【解析】
(1))當時,將函數(shù)寫成分段函數(shù),即可求得不等式的解集.(2)根據(jù)原命題是假命題,這命題的否定為真命題,即“,”為真命題,只需滿足即可.【詳解】解:(1)當時,由,得.故不等式的解集為.(2)因為“,”為假命題,所以“,”為真命題,所以.因為,所以,則,所以,即,解得,即的取值范圍為.本題考查絕對值不等式的解法,以及絕對值三角不等式,屬于基礎(chǔ)題.18.(1)(2);時,取得最小值【解析】
(1)設(shè)等差數(shù)列的公差為,由,結(jié)合已知,聯(lián)立方程組,即可求得答案.(2)由(1)知,故可得,即可求得答案.【詳解】(1)設(shè)等差數(shù)列的公差為,由及,得解得數(shù)列的通項公式為(2)由(1)知時,取得最小值.本題解題關(guān)鍵是掌握等差數(shù)列通項公式和前項和公式,考查了分析能力和計算能力,屬于基礎(chǔ)題.19.(1)不同的樣本的個數(shù)為.(2)①分布列見解析,.②線性回歸方程為.可預(yù)測該同學的物理成績?yōu)?6分.【解析】
(1)按比例抽取即可,再用乘法原理計算不同的樣本數(shù).(2)名學生中物理和數(shù)學都優(yōu)秀的有3名學生,任取3名學生,都優(yōu)秀的學生人數(shù)服從超幾何分布,故可得其概率分布列及其數(shù)學期望.而線性回歸方程的計算可用給出的公式計算,并利用得到的回歸方程預(yù)測該同學的物理成績.【詳解】(1)依據(jù)分層抽樣的方法,24名女同學中應(yīng)抽取的人數(shù)為名,18名男同學中應(yīng)抽取的人數(shù)為名,故不同的樣本的個數(shù)為.(2)①∵7名同學中數(shù)學和物理成績均為優(yōu)秀的人數(shù)為3名,∴的取值為0,1,2,3.∴,,,.∴的分布列為0123∴.②∵,.∴線性回歸方程為.當時,.可預(yù)測該同學的物理成績?yōu)?6分.在計算離散型隨機變量的概率時,注意利用常見的概率分布列來簡化計算(如二項分布、超幾何分布等).20.見解析【解析】
若選擇①,結(jié)合三角形的面積公式,得,化簡得到,則,又,從而得到,將代入,得.又,∴,當且僅當時等號成立.∴,故的面積的最大值為,此時.若選擇②,,結(jié)合三角形的面積公式,得,化簡得到,則,又,從而得到,則,此時為等腰直角三角形,.若選擇③,,則結(jié)合三角形的面積公式,得,化簡得到,則,又,從而得到,則.21.(1),;(2).【解析】
(1)由條件得出方程組,可求得的通項,當時,,可得,當時,,得出是以1為首項,2為公比的等比數(shù)列,可求得的通項;(2)由(1)可知,,分n為偶數(shù)和n為奇數(shù)分別求得.【詳解】(1)由條件知,,,當時,,即,當時,,是以1為首項,2為公比的等比數(shù)列,;(2)由(1)可知,,當n為偶數(shù)時,當n為奇數(shù)時,綜上,本題考查等差數(shù)列和等比數(shù)列的通項的求得,以及其前n項和,注意分n為偶數(shù)和n為奇數(shù)兩種情況分別求得其數(shù)列的和,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
- 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
- 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負責。
- 6. 下載文件中如有侵權(quán)或不適當內(nèi)容,請與我們聯(lián)系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 中國地理原創(chuàng)試題及答案
- 西藏自治區(qū)日喀則市南木林高級中學2025屆高二生物第二學期期末學業(yè)水平測試試題含解析
- 學海大聯(lián)考 2025屆高二化學第二學期期末調(diào)研模擬試題含解析
- 云南省昆明市師范大學附屬中學2024-2025學年高二生物第二學期期末聯(lián)考試題含解析
- 浙江省杭州市西湖區(qū)杭州學軍中學2025年高二下物理期末經(jīng)典模擬試題含解析
- 鹽城市阜寧縣高二上學期期中考試歷史試題
- 節(jié)能減排項目廠房所有權(quán)轉(zhuǎn)讓合同
- 企業(yè)內(nèi)部保密合同協(xié)議書
- 綠色生態(tài)彩鋼板房建造與維護服務(wù)合同
- 農(nóng)家樂廚師聘用及農(nóng)家特色菜品研發(fā)合同
- 開荒保潔施工方案三篇
- 近5年高考背誦默寫真題
- 電梯工程竣工驗收報告
- 江蘇省無錫市惠山區(qū)2024年統(tǒng)編版小升初考試語文試卷(含答案解析)
- JT-T-1134-2017道路客貨運運輸駕駛員行車操作規(guī)范
- 課前游戲-數(shù)字炸彈-模板可修改
- 2023年湖南省高考化學真題卷和答案
- 《中式烹調(diào)工藝》課件-熱菜烹調(diào)工藝
- 《高壓電力用戶安全用電》
- 糧食收集裝袋機結(jié)構(gòu)設(shè)計說明書
- 工會專業(yè)知識考試題庫
評論
0/150
提交評論