




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省江陰市澄要片2024年中考數學最后一模試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(共10小題,每小題3分,共30分)1.解分式方程,分以下四步,其中,錯誤的一步是()A.方程兩邊分式的最簡公分母是(x﹣1)(x+1)B.方程兩邊都乘以(x﹣1)(x+1),得整式方程2(x﹣1)+3(x+1)=6C.解這個整式方程,得x=1D.原方程的解為x=12.不等式組中兩個不等式的解集,在數軸上表示正確的是A. B.C. D.3.點A為數軸上表示-2的動點,當點A沿數軸移動4個單位長到B時,點B所表示的實數是()A.1B.-6C.2或-6D.不同于以上答案4.下列圖形是幾家通訊公司的標志,其中既是軸對稱圖形又是中心對稱圖形的是()A. B. C. D.5.如圖,直線l是一次函數y=kx+b的圖象,若點A(3,m)在直線l上,則m的值是()A.﹣5 B. C. D.76.如圖,由矩形和三角形組合而成的廣告牌緊貼在墻面上,重疊部分(陰影)的面積是4m2,廣告牌所占的面積是30m2(厚度忽略不計),除重疊部分外,矩形剩余部分的面積比三角形剩余部分的面積多2m2,設矩形面積是xm2,三角形面積是ym2,則根據題意,可列出二元一次方程組為()A. B. C. D.7.已知:a、b是不等于0的實數,2a=3b,那么下列等式中正確的是()A.ab=23 B.a8.如圖是一次數學活動課制作的一個轉盤,盤面被等分成四個扇形區域,并分別標有數字-1,0,1,2.若轉動轉盤兩次,每次轉盤停止后記錄指針所指區域的數字(當指針恰好指在分界線上時,不記,重轉),則記錄的兩個數字都是正數的概率為()A. B. C. D.9.下列各式屬于最簡二次根式的有()A. B. C. D.10.某校有35名同學參加眉山市的三蘇文化知識競賽,預賽分數各不相同,取前18名同學參加決賽.其中一名同學知道自己的分數后,要判斷自己能否進入決賽,只需要知道這35名同學分數的(
).A.眾數 B.中位數 C.平均數 D.方差二、填空題(本大題共6個小題,每小題3分,共18分)11.不等式組的解集是__________.12.有兩個一元二次方程:M:ax2+bx+c=0,N:cx2+bx+a=0,其中a+c=0,以下列四個結論中正確的是_____(填寫序號).①如果方程M有兩個不相等的實數根,那么方程N也有兩個不相等的實數根;②如果方程M有兩根符號相同,那么方程N的兩根符號也相同;③如果方程M和方程N有一個相同的根,那么這個根必是x=1;④如果5是方程M的一個根,那么是方程N的一個根.13.如圖,在□ABCD中,用直尺和圓規作∠BAD的平分線AG,若AD=5,DE=6,則AG的長是________.14.拋物線y=x2+2x+m﹣1與x軸有交點,則m的取值范圍是_____.15.如圖,在矩形ABCD中,AD=3,將矩形ABCD繞點A逆時針旋轉,得到矩形AEFG,點B的對應點E落在CD上,且DE=EF,則AB的長為_____.16.拋物線y=ax2+bx+c的頂點為D(-1,2),與x軸的一個交點A在點(-3,1)和(-2,1)之間,其部分圖象如圖,則以下結論:①b2-4ac<1;②當x>-1時y隨x增大而減小;③a+b+c<1;④若方程ax2+bx+c-m=1沒有實數根,則m>2;
⑤3a+c<1.其中,正確結論的序號是________________.三、解答題(共8題,共72分)17.(8分)已知:如圖,∠ABC,射線BC上一點D,求作:等腰△PBD,使線段BD為等腰△PBD的底邊,點P在∠ABC內部,且點P到∠ABC兩邊的距離相等.18.(8分)研究發現,拋物線上的點到點F(0,1)的距離與到直線l:的距離相等.如圖1所示,若點P是拋物線上任意一點,PH⊥l于點H,則PF=PH.基于上述發現,對于平面直角坐標系xOy中的點M,記點到點的距離與點到點的距離之和的最小值為d,稱d為點M關于拋物線的關聯距離;當時,稱點M為拋物線的關聯點.(1)在點,,,中,拋物線的關聯點是_____;(2)如圖2,在矩形ABCD中,點,點,①若t=4,點M在矩形ABCD上,求點M關于拋物線的關聯距離d的取值范圍;②若矩形ABCD上的所有點都是拋物線的關聯點,則t的取值范圍是________.19.(8分)如圖,AB為⊙O直徑,C為⊙O上一點,點D是的中點,DE⊥AC于E,DF⊥AB于F.(1)判斷DE與⊙O的位置關系,并證明你的結論;(2)若OF=4,求AC的長度.20.(8分)定義:若四邊形中某個頂點與其它三個頂點的距離相等,則這個四邊形叫做等距四邊形,這個頂點叫做這個四邊形的等距點.(1)判斷:一個內角為120°的菱形等距四邊形.(填“是”或“不是”)(2)如圖2,在5×5的網格圖中有A、B兩點,請在答題卷給出的兩個網格圖上各找出C、D兩個格點,使得以A、B、C、D為頂點的四邊形為互不全等的“等距四邊形”,畫出相應的“等距四邊形”,并寫出該等距四邊形的端點均為非等距點的對角線長.端點均為非等距點的對角線長為端點均為非等距點的對角線長為(3)如圖1,已知△ABE與△CDE都是等腰直角三角形,∠AEB=∠DEC=90°,連結AD,AC,BC,若四邊形ABCD是以A為等距點的等距四邊形,求∠BCD的度數.21.(8分)如圖,邊長為1的正方形ABCD的對角線AC、BD相交于點O.有直角∠MPN,使直角頂點P與點O重合,直角邊PM、PN分別與OA、OB重合,然后逆時針旋轉∠MPN,旋轉角為θ(0°<θ<90°),PM、PN分別交AB、BC于E、F兩點,連接EF交OB于點G.(1)求四邊形OEBF的面積;(2)求證:OG?BD=EF2;(3)在旋轉過程中,當△BEF與△COF的面積之和最大時,求AE的長.22.(10分)如圖,已知△ABC是等邊三角形,點D在AC邊上一點,連接BD,以BD為邊在AB的左側作等邊△DEB,連接AE,求證:AB平分∠EAC.23.(12分)如圖,在四邊形ABCD中,E是AB的中點,AD//EC,∠AED=∠B.求證:△AED≌△EBC;當AB=6時,求CD的長.24.如圖,經過點C(0,﹣4)的拋物線()與x軸相交于A(﹣2,0),B兩點.(1)a0,0(填“>”或“<”);(2)若該拋物線關于直線x=2對稱,求拋物線的函數表達式;(3)在(2)的條件下,連接AC,E是拋物線上一動點,過點E作AC的平行線交x軸于點F.是否存在這樣的點E,使得以A,C,E,F為頂點所組成的四邊形是平行四邊形?若存在,求出滿足條件的點E的坐標;若不存在,請說明理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、D【解析】
先去分母解方程,再檢驗即可得出.【詳解】方程無解,雖然化簡求得,但是將代入原方程中,可發現和的分母都為零,即無意義,所以,即方程無解【點睛】本題考查了分式方程的求解與檢驗,在分式方程中,一般求得的x值都需要進行檢驗2、B【解析】由①得,x<3,由②得,x≥1,所以不等式組的解集為:1≤x<3,在數軸上表示為:,故選B.3、C【解析】解:∵點A為數軸上的表示-1的動點,①當點A沿數軸向左移動4個單位長度時,點B所表示的有理數為-1-4=-6;②當點A沿數軸向右移動4個單位長度時,點B所表示的有理數為-1+4=1.故選C.點睛:注意數的大小變化和平移之間的規律:左減右加.與點A的距離為4個單位長度的點B有兩個,一個向左,一個向右.4、C【解析】
根據軸對稱圖形與中心對稱圖形的概念求解.【詳解】A.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;B.不是軸對稱圖形,也不是中心對稱圖形.故錯誤;C.是軸對稱圖形,也是中心對稱圖形.故正確;D.不是軸對稱圖形,是中心對稱圖形.故錯誤.故選C.【點睛】掌握好中心對稱圖形與軸對稱圖形的概念.軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合;中心對稱圖形是要尋找對稱中心,旋轉180°后與原圖重合.5、C【解析】
把(-2,0)和(0,1)代入y=kx+b,求出解析式,再將A(3,m)代入,可求得m.【詳解】把(-2,0)和(0,1)代入y=kx+b,得,解得所以,一次函數解析式y=x+1,再將A(3,m)代入,得m=×3+1=.故選C.【點睛】本題考核知識點:考查了待定系數法求一次函數的解析式,根據解析式再求函數值.6、A【解析】
根據題意找到等量關系:①矩形面積+三角形面積﹣陰影面積=30;②(矩形面積﹣陰影面積)﹣(三角形面積﹣陰影面積)=4,據此列出方程組.【詳解】依題意得:.故選A.【點睛】考查了由實際問題抽象出二元一次方程組.根據實際問題中的條件列方程組時,要注意抓住題目中的一些關鍵性詞語,找出等量關系,列出方程組.7、B【解析】∵2a=3b,∴ab=3故選B.8、C【解析】
列表得,
1
2
0
-1
1
(1,1)
(1,2)
(1,0)
(1,-1)
2
(2,1)
(2,2)
(2,0)
(2,-1)
0
(0,1)
(0,2)
(0,0)
(0,-1)
-1
(-1,1)
(-1,2)
(-1,0)
(-1,-1)
由表格可知,總共有16種結果,兩個數都為正數的結果有4種,所以兩個數都為正數的概率為,故選C.考點:用列表法(或樹形圖法)求概率.9、B【解析】
先根據二次根式的性質化簡,再根據最簡二次根式的定義判斷即可.【詳解】A選項:,故不是最簡二次根式,故A選項錯誤;B選項:是最簡二次根式,故B選項正確;C選項:,故不是最簡二次根式,故本選項錯誤;D選項:,故不是最簡二次根式,故D選項錯誤;
故選:B.【點睛】考查了對最簡二次根式的定義的理解,能理解最簡二次根式的定義是解此題的關鍵.10、B【解析】分析:由于比賽取前18名參加決賽,共有35名選手參加,根據中位數的意義分析即可.詳解:35個不同的成績按從小到大排序后,中位數及中位數之后的共有18個數,故只要知道自己的成績和中位數就可以知道是否進入決賽了.故選B.點睛:本題考查了統計量的選擇,以及中位數意義,解題的關鍵是正確的求出這組數據的中位數二、填空題(本大題共6個小題,每小題3分,共18分)11、x≥1【解析】分析:分別求出兩個不等式的解,從而得出不等式組的解集.詳解:解不等式①可得:x≥1,解不等式②可得:x>-3,∴不等式組的解為x≥1.點睛:本題主要考查的是不等式組的解集,屬于基礎題型.理解不等式的性質是解決這個問題的關鍵.12、①②④【解析】試題解析:①在方程ax2+bx+c=0中△=b2-4ac,在方程cx2+bx+a=0中△=b2-4ac,
∴如果方程M有兩個不相等的實數根,那么方程N也有兩個不相等的實數根,正確;
②∵和符號相同,和符號也相同,
∴如果方程M有兩根符號相同,那么方程N的兩根符號也相同,正確;
③、M-N得:(a-c)x2+c-a=0,即(a-c)x2=a-c,
∵a≠c,
∴x2=1,解得:x=±1,錯誤;④∵5是方程M的一個根,
∴25a+5b+c=0,
∴a+b+c=0,
∴是方程N的一個根,正確.
故正確的是①②④.13、2【解析】試題解析:連接EG,
∵由作圖可知AD=AE,AG是∠BAD的平分線,
∴∠1=∠2,
∴AG⊥DE,OD=DE=1.
∵四邊形ABCD是平行四邊形,
∴CD∥AB,
∴∠2=∠1,
∴∠1=∠1,
∴AD=DG.
∵AG⊥DE,
∴OA=AG.
在Rt△AOD中,OA==4,
∴AG=2AO=2.
故答案為2.14、m≤1.【解析】
由拋物線與x軸有交點可得出方程x1+1x+m-1=0有解,利用根的判別式△≥0,即可得出關于m的一元一次不等式,解之即可得出結論.【詳解】∴關于x的一元二次方程x1+1x+m?1=0有解,∴△=11?4(m?1)=8?4m≥0,解得:m≤1.故答案為:m≤1.【點睛】本題考查的知識點是拋物線與坐標軸的交點,解題的關鍵是熟練的掌握拋物線與坐標軸的交點.15、3【解析】【分析】根據旋轉的性質知AB=AE,在直角三角形ADE中根據勾股定理求得AE長即可得.【詳解】∵四邊形ABCD是矩形,∴∠D=90°,BC=AD=3,∵將矩形ABCD繞點A逆時針旋轉得到矩形AEFG,∴EF=BC=3,AE=AB,∵DE=EF,∴AD=DE=3,∴AE==3,∴AB=3,故答案為3.【點睛】本題考查矩形的性質和旋轉的性質,熟知旋轉前后哪些線段是相等的是解題的關鍵.16、②③④⑤【解析】試題解析:∵二次函數與x軸有兩個交點,∴b2-4ac>1,故①錯誤,觀察圖象可知:當x>-1時,y隨x增大而減小,故②正確,∵拋物線與x軸的另一個交點為在(1,1)和(1,1)之間,∴x=1時,y=a+b+c<1,故③正確,∵當m>2時,拋物線與直線y=m沒有交點,∴方程ax2+bx+c-m=1沒有實數根,故④正確,∵對稱軸x=-1=-,∴b=2a,∵a+b+c<1,∴3a+c<1,故⑤正確,故答案為②③④⑤.三、解答題(共8題,共72分)17、見解析.【解析】
根據角平分線的性質、線段的垂直平分線的性質即可解決問題.【詳解】∵點P在∠ABC的平分線上,∴點P到∠ABC兩邊的距離相等(角平分線上的點到角的兩邊距離相等),∵點P在線段BD的垂直平分線上,∴PB=PD(線段的垂直平分線上的點到線段的兩個端點的距離相等),如圖所示:【點睛】本題考查作圖﹣復雜作圖、角平分線的性質、線段的垂直平分線的性質等知識,解題的關鍵是靈活運用所學知識解決問題.18、(1)(2)①②【解析】【分析】(1)根據關聯點的定義逐一進行判斷即可得;(2))①當時,,,,,可以確定此時矩形上的所有點都在拋物線的下方,所以可得,由此可知,從而可得;②由①知,分兩種情況畫出圖形進行討論即可得.【詳解】(1),x=2時,y==1,此時P(2,1),則d=1+2=3,符合定義,是關聯點;,x=1時,y==,此時P(1,),則d=+=3,符合定義,是關聯點;,x=4時,y==4,此時P(4,4),則d=1+=6,不符合定義,不是關聯點;,x=0時,y==0,此時P(0,0),則d=4+5=9,不不符合定義,是關聯點,故答案為;(2)①當時,,,,,此時矩形上的所有點都在拋物線的下方,∴,∴,∵,∴;②由①,,如圖2所示時,CF最長,當CF=4時,即=4,解得:t=,如圖3所示時,DF最長,當DF=4時,即DF==4,解得t=,故答案為【點睛】本題考查了新定義題,二次函數的綜合,題目較難,讀懂新概念,能靈活應用新概念,結合圖形解題是關鍵.19、(1)DE與⊙O相切,證明見解析;(2)AC=8.【解析】(1)解:(1)DE與⊙O相切.證明:連接OD、AD,∵點D是的中點,∴=,∴∠DAO=∠DAC,∵OA=OD,∴∠DAO=∠ODA,∴∠DAC=∠ODA,∴OD∥AE,∵DE⊥AC,∴DE⊥OD,∴DE與⊙O相切.(2)連接BC,根據△ODF與△ABC相似,求得AC的長.AC=820、(1)是;(2)見解析;(3)150°.【解析】
(1)由菱形的性質和等邊三角形的判定與性質即可得出結論;(2)根據題意畫出圖形,由勾股定理即可得出答案;(3)由SAS證明△AEC≌△BED,得出AC=BD,由等距四邊形的定義得出AD=AB=AC,證出AD=AB=BD,△ABD是等邊三角形,得出∠DAB=60°,由SSS證明△AED≌△AEC,得出∠CAE=∠DAE=15°,求出∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,由等腰三角形的性質和三角形內角和定理求出∠ACB和∠ACD的度數,即可得出答案.【詳解】解:(1)一個內角為120°的菱形是等距四邊形;故答案為是;(2)如圖2,圖3所示:在圖2中,由勾股定理得:在圖3中,由勾股定理得:故答案為(3)解:連接BD.如圖1所示:∵△ABE與△CDE都是等腰直角三角形,∴DE=EC,AE=EB,∠DEC+∠BEC=∠AEB+∠BEC,即∠AEC=∠DEB,在△AEC和△BED中,,∴△AEC≌△BED(SAS),∴AC=BD,∵四邊形ABCD是以A為等距點的等距四邊形,∴AD=AB=AC,∴AD=AB=BD,∴△ABD是等邊三角形,∴∠DAB=60°,∴∠DAE=∠DAB﹣∠EAB=60°﹣45°=15°,在△AED和△AEC中,∴△AED≌△AEC(SSS),∴∠CAE=∠DAE=15°,∴∠DAC=∠CAE+∠DAE=30°,∠BAC=∠BAE﹣∠CAE=30°,∵AB=AC,AC=AD,∴∴∠BCD=∠ACB+∠ACD=75°+75°=150°.【點睛】本題是四邊形綜合題目,考查了等距四邊形的判定與性質、菱形的性質、等邊三角形的判定與性質、勾股定理、全等三角形的判定與性質、等腰三角形的性質、三角形內角和定理等知識;本題綜合性強,有一定難度,證明三角形全等是解決問題的關鍵.21、(1);(2)詳見解析;(3)AE=.【解析】
(1)由四邊形ABCD是正方形,直角∠MPN,易證得△BOE≌△COF(ASA),則可證得S四邊形OEBF=S△BOC=S正方形ABCD;(2)易證得△OEG∽△OBE,然后由相似三角形的對應邊成比例,證得OG?OB=OE2,再利用OB與BD的關系,OE與EF的關系,即可證得結論;(3)首先設AE=x,則BE=CF=1﹣x,BF=x,繼而表示出△BEF與△COF的面積之和,然后利用二次函數的最值問題,求得AE的長.【詳解】(1)∵四邊形ABCD是正方形,∴OB=OC,∠OBE=∠OCF=45°,∠BOC=90°,∴∠BOF+∠COF=90°,∵∠EOF=90°,∴∠BOF+∠COE=90°,∴∠BOE=∠COF,在△BOE和△COF中,∴△BOE≌△COF(ASA),∴S四邊形OEBF=S△BOE+S△BOE=S△BOE+S△COF=S△BOC=S正方形ABCD(2)證明:∵∠EOG=∠BOE,∠OEG=∠OBE=45°,∴△OEG∽△OBE,∴OE:OB=OG:OE,∴OG?OB=OE2,∵∴OG?BD=EF2;(3)如圖,過點O作OH⊥BC,∵BC=1,∴設AE=x,則BE=CF=1﹣x,BF=x,∴S△BEF+S△COF=BE?BF+CF?OH∵∴當時,S△BEF+S△COF最大;即在旋轉過程中,當△BEF與△COF的面積之和最大時,【點睛】本題屬于四邊形的綜合題,主要考查了正方形的性質,旋轉的性質、全等三角形的判定與性質、相似三角形的判定與性質、勾股定理以及二次函數的最值問題.注意掌握轉化思想的應用是解此題的關鍵.22、詳見解析【解析】
由等邊三角形的性質得出AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,證出∠ABE=∠CBD,證明△ABE≌△CBD(SAS),得出∠BAE=∠BCD=60°,得出∠BAE=∠BAC,即可得出結論.【詳解】證明:∵△ABC,△DEB都是等邊三角形,∴AB=BC,BD=BE,∠BAC=∠BCA=∠ABC=∠DBE=60°,∴∠ABC﹣∠ABD=∠DBE﹣∠ABD,即∠ABE=∠CBD,在△ABE和△CBD中,∵AB=CB,∠ABE=∠CBD,BE=BD,,∴△ABE≌△CBD(SAS),∴∠BAE=∠BCD=60°,∴∠BAE=∠BAC,∴AB平分∠EAC.【點睛】本題考查了全等三角形的判定與性質,等邊三角形的性質等知識,熟練掌握等邊三角形的性質,證明三角形全等是解題的關鍵.23、(1)證明見解析;(2)CD=3【解析】分析:(1)根據二直線平行同位角相等得出∠A=∠BEC,根據中點的定義得出AE=BE,然后由ASA判斷出△AED≌△EBC;(2)根據全等三角形對應邊相等得出AD=EC,然后根據一組對邊平行且相等的四邊形是平行四邊形得出四邊形AECD是平行四邊形,根據平行四邊形的對邊相等得出答案.詳解:(1)證明:∵AD∥EC∴∠A=∠BEC∵E是AB中點,∴AE=BE∵∠AED=∠B∴△AED≌△EBC(2)解:∵△AED≌△EBC∴AD=EC∵AD∥EC∴四邊形AEC
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年X射線管項目建議書
- 小班健康預防傳染病知識課件
- 海外跨境電商平臺入駐與全球售后服務支持合同
- 抖音火花小程序版權審核與侵權賠償協議
- 拉美旅游度假村股權合作與經營管理協議
- 新能源汽車電池租賃全面保障保險理賠服務補充協議
- 工業廢氣處理工程質保服務及長期維護協議書
- 離婚協議財產分割、子女撫養、教育、醫療、贍養及探望權清單協議
- 酒店服務標準與運營培訓體系
- 新能源汽車產業鏈股權合作與產業孵化協議
- 2025年全國燃氣安全生產管理主要負責人考試筆試試題(500題)附答案
- 列那狐測試題及答案
- 《酉陽雜俎》女性角色研究
- 浙江省嘉興市2025屆高三下學期4月教學測試物理+答案
- 店長入股協議書范本
- 夏季高溫季節施工應急預案
- 嬰幼兒照護 課件 2遺尿現象的干預
- 2025年廣東省深圳市31校中考一模歷史試題及答案
- 餐飲廚房燃氣設備安全操作與維護
- 2025年上海勞動合同范本
- 高中生的規則意識教育
評論
0/150
提交評論