2025年廣西部分重點中學高三下5月第一次階段達標檢測試題數學試題含解析_第1頁
2025年廣西部分重點中學高三下5月第一次階段達標檢測試題數學試題含解析_第2頁
2025年廣西部分重點中學高三下5月第一次階段達標檢測試題數學試題含解析_第3頁
2025年廣西部分重點中學高三下5月第一次階段達標檢測試題數學試題含解析_第4頁
2025年廣西部分重點中學高三下5月第一次階段達標檢測試題數學試題含解析_第5頁
已閱讀5頁,還剩16頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025年廣西部分重點中學高三下5月第一次階段達標檢測試題數學試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.我國古代數學家秦九韶在《數書九章》中記述了“三斜求積術”,用現代式子表示即為:在中,角所對的邊分別為,則的面積.根據此公式,若,且,則的面積為()A. B. C. D.2.函數的部分圖像大致為()A. B.C. D.3.網絡是一種先進的高頻傳輸技術,我國的技術發展迅速,已位居世界前列.華為公司2019年8月初推出了一款手機,現調查得到該款手機上市時間和市場占有率(單位:%)的幾組相關對應數據.如圖所示的折線圖中,橫軸1代表2019年8月,2代表2019年9月……,5代表2019年12月,根據數據得出關于的線性回歸方程為.若用此方程分析并預測該款手機市場占有率的變化趨勢,則最早何時該款手機市場占有率能超過0.5%(精確到月)()A.2020年6月 B.2020年7月 C.2020年8月 D.2020年9月4.設正項等比數列的前n項和為,若,,則公比()A. B.4 C. D.25.已知雙曲線的一個焦點為,點是的一條漸近線上關于原點對稱的兩點,以為直徑的圓過且交的左支于兩點,若,的面積為8,則的漸近線方程為()A. B.C. D.6.已知關于的方程在區間上有兩個根,,且,則實數的取值范圍是()A. B. C. D.7.關于函數有下述四個結論:()①是偶函數;②在區間上是單調遞增函數;③在上的最大值為2;④在區間上有4個零點.其中所有正確結論的編號是()A.①②④ B.①③ C.①④ D.②④8.如圖,在平行四邊形中,對角線與交于點,且,則()A. B.C. D.9.《九章算術》是我國古代數學名著,書中有如下問題:“今有勾六步,股八步,問勾中容圓,徑幾何?”其意思為:“已知直角三角形兩直角邊長分別為6步和8步,問其內切圓的直徑為多少步?”現從該三角形內隨機取一點,則此點取自內切圓的概率是()A. B. C. D.10.已知復數,為的共軛復數,則()A. B. C. D.11.設為自然對數的底數,函數,若,則()A. B. C. D.12.已知與函數和都相切,則不等式組所確定的平面區域在內的面積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在等比數列中,,則________.14.已知,則________.(填“>”或“=”或“<”).15.若一個正四面體的棱長為1,四個頂點在同一個球面上,則此球的表面積為_________.16.在的展開式中,常數項為________.(用數字作答)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數與的圖象關于直線對稱.(為自然對數的底數)(1)若的圖象在點處的切線經過點,求的值;(2)若不等式恒成立,求正整數的最小值.18.(12分)某廣告商租用了一塊如圖所示的半圓形封閉區域用于產品展示,該封閉區域由以為圓心的半圓及直徑圍成.在此區域內原有一個以為直徑、為圓心的半圓形展示區,該廣告商欲在此基礎上,將其改建成一個凸四邊形的展示區,其中、分別在半圓與半圓的圓弧上,且與半圓相切于點.已知長為40米,設為.(上述圖形均視作在同一平面內)(1)記四邊形的周長為,求的表達式;(2)要使改建成的展示區的面積最大,求的值.19.(12分)已知函數(,為自然對數的底數),.(1)若有兩個零點,求實數的取值范圍;(2)當時,對任意的恒成立,求實數的取值范圍.20.(12分)在直角坐標系中,直線的參數方程為為參數),直線的參數方程(為參數),若直線的交點為,當變化時,點的軌跡是曲線(1)求曲線的普通方程;(2)以坐標原點為極點,軸非負半軸為極軸且取相同的單位長度建立極坐標系,設射線的極坐標方程為,,點為射線與曲線的交點,求點的極徑.21.(12分)設數列{an}的前n項和為Sn,且a1=1,an+1=2Sn+1(1)求數列{an}(2)設cn=bnan,求數列22.(10分)在平面直角坐標系中,已知點,曲線:(為參數)以原點為極點,軸正半軸建立極坐標系,直線的極坐標方程為.(Ⅰ)判斷點與直線的位置關系并說明理由;(Ⅱ)設直線與曲線的兩個交點分別為,,求的值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

根據,利用正弦定理邊化為角得,整理為,根據,得,再由余弦定理得,又,代入公式求解.【詳解】由得,即,即,因為,所以,由余弦定理,所以,由的面積公式得故選:A本題主要考查正弦定理和余弦定理以及類比推理,還考查了運算求解的能力,屬于中檔題.2.A【解析】

根據函數解析式,可知的定義域為,通過定義法判斷函數的奇偶性,得出,則為偶函數,可排除選項,觀察選項的圖象,可知代入,解得,排除選項,即可得出答案.【詳解】解:因為,所以的定義域為,則,∴為偶函數,圖象關于軸對稱,排除選項,且當時,,排除選項,所以正確.故選:A.本題考查由函數解析式識別函數圖象,利用函數的奇偶性和特殊值法進行排除.3.C【解析】

根據圖形,計算出,然后解不等式即可.【詳解】解:,點在直線上,令因為橫軸1代表2019年8月,所以橫軸13代表2020年8月,故選:C考查如何確定線性回歸直線中的系數以及線性回歸方程的實際應用,基礎題.4.D【解析】

由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數列得,∴,故選:D.本題主要考查等比數列的性質的應用,屬于基礎題.5.B【解析】

由雙曲線的對稱性可得即,又,從而可得的漸近線方程.【詳解】設雙曲線的另一個焦點為,由雙曲線的對稱性,四邊形是矩形,所以,即,由,得:,所以,所以,所以,,所以,的漸近線方程為.故選B本題考查雙曲線的簡單幾何性質,考查直線與圓的位置關系,考查數形結合思想與計算能力,屬于中檔題.6.C【解析】

先利用三角恒等變換將題中的方程化簡,構造新的函數,將方程的解的問題轉化為函數圖象的交點問題,畫出函數圖象,再結合,解得的取值范圍.【詳解】由題化簡得,,作出的圖象,又由易知.故選:C.本題考查了三角恒等變換,方程的根的問題,利用數形結合法,求得范圍.屬于中檔題.7.C【解析】

根據函數的奇偶性、單調性、最值和零點對四個結論逐一分析,由此得出正確結論的編號.【詳解】的定義域為.由于,所以為偶函數,故①正確.由于,,所以在區間上不是單調遞增函數,所以②錯誤.當時,,且存在,使.所以當時,;由于為偶函數,所以時,所以的最大值為,所以③錯誤.依題意,,當時,,所以令,解得,令,解得.所以在區間,有兩個零點.由于為偶函數,所以在區間有兩個零點.故在區間上有4個零點.所以④正確.綜上所述,正確的結論序號為①④.故選:C本小題主要考查三角函數的奇偶性、單調性、最值和零點,考查化歸與轉化的數學思想方法,屬于中檔題.8.C【解析】

畫出圖形,以為基底將向量進行分解后可得結果.【詳解】畫出圖形,如下圖.選取為基底,則,∴.故選C.應用平面向量基本定理應注意的問題(1)只要兩個向量不共線,就可以作為平面的一組基底,基底可以有無窮多組,在解決具體問題時,合理選擇基底會給解題帶來方便.(2)利用已知向量表示未知向量,實質就是利用平行四邊形法則或三角形法則進行向量的加減運算或數乘運算.9.C【解析】

利用直角三角形三邊與內切圓半徑的關系求出半徑,再分別求出三角形和內切圓的面積,根據幾何概型的概率計算公式,即可求解.【詳解】由題意,直角三角形的斜邊長為,利用等面積法,可得其內切圓的半徑為,所以向次三角形內投擲豆子,則落在其內切圓內的概率為.故選:C.本題主要考查了面積比的幾何概型的概率的計算問題,其中解答中熟練應用直角三角形的性質,求得其內切圓的半徑是解答的關鍵,著重考查了推理與運算能力.10.C【解析】

求出,直接由復數的代數形式的乘除運算化簡復數.【詳解】.故選:C本題考查復數的代數形式的四則運算,共軛復數,屬于基礎題.11.D【解析】

利用與的關系,求得的值.【詳解】依題意,所以故選:D本小題主要考查函數值的計算,屬于基礎題.12.B【解析】

根據直線與和都相切,求得的值,由此畫出不等式組所表示的平面區域以及圓,由此求得正確選項.【詳解】.設直線與相切于點,斜率為,所以切線方程為,化簡得①.令,解得,,所以切線方程為,化簡得②.由①②對比系數得,化簡得③.構造函數,,所以在上遞減,在上遞增,所以在處取得極小值也即是最小值,而,所以有唯一解.也即方程③有唯一解.所以切線方程為.即.不等式組即,畫出其對應的區域如下圖所示.圓可化為,圓心為.而方程組的解也是.畫出圖像如下圖所示,不等式組所確定的平面區域在內的部分如下圖陰影部分所示.直線的斜率為,直線的斜率為.所以,所以,而圓的半徑為,所以陰影部分的面積是.故選:B本小題主要考查根據公共切線求參數,考查不等式組表示區域的畫法,考查圓的方程,考查兩條直線夾角的計算,考查扇形面積公式,考查數形結合的數學思想方法,考查分析思考與解決問題的能力,屬于難題.二、填空題:本題共4小題,每小題5分,共20分。13.1【解析】

設等比數列的公比為,再根據題意用基本量法求解公比,進而利用等比數列項之間的關系得即可.【詳解】設等比數列的公比為.由,得,解得.又由,得.則.故答案為:1本題主要考查了等比數列基本量的求解方法,屬于基礎題.14.【解析】

注意到,故只需比較與1的大小即可.【詳解】由已知,,故有.又由,故有.故答案為:.本題考查對數式比較大小,涉及到換底公式的應用,考查學生的數學運算能力,是一道中檔題.15.【解析】

將四面體補成一個正方體,通過正方體的對角線與球的半徑的關系,得到球的半徑,利用球的表面積公式,即可求解.【詳解】如圖所示,將正四面體補形成一個正方體,則正四面體的外接球與正方體的外接球表示同一個球,因為正四面體的棱長為1,所以正方體的棱長為,設球的半徑為,因為球的直徑是正方體的對角線,即,解得,所以球的表面積為.本題主要考查了有關求得組合體的結構特征,以及球的表面積的計算,其中巧妙構造正方體,利用正方體的外接球的直徑等于正方體的對角線長,得到球的半徑是解答的關鍵,著重考查了空間想象能力,以及運算與求解能力,屬于基礎題.16.【解析】

的展開式的通項為,取計算得到答案.【詳解】的展開式的通項為:,取得到常數項.故答案為:.本題考查了二項式定理,意在考查學生的計算能力.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)e;(2)2.【解析】

(1)根據反函數的性質,得出,再利用導數的幾何意義,求出曲線在點處的切線為,構造函數,利用導數求出單調性,即可得出的值;(2)設,求導,求出的單調性,從而得出最大值為,結合恒成立的性質,得出正整數的最小值.【詳解】(1)根據題意,與的圖象關于直線對稱,所以函數的圖象與互為反函數,則,,設點,,又,當時,,曲線在點處的切線為,即,代入點,得,即,構造函數,當時,,當時,,且,當時,單調遞增,而,故存在唯一的實數根.(2)由于不等式恒成立,可設,所以,令,得.所以當時,;當時,,因此函數在是增函數,在是減函數.故函數的最大值為.令,因為,,又因為在是減函數.所以當時,.所以正整數的最小值為2.本題考查導數的幾何意義和利用導數解決恒成立問題,涉及到單調性、構造函數法等,考查函數思想和計算能力.18.(1),.(2)【解析】

(1)由余弦定理的,然后根據直線與圓相切的性質求出,從而求出;(2)求得的表達式,通過求導研究函數的單調性求得最大值.【詳解】解:(1)連.由條件得.在三角形中,,,,由余弦定理,得,因為與半圓相切于,所以,所以,所以.所以四邊形的周長為,.(2)設四邊形的面積為,則,.所以,.令,得列表:+0-增最大值減答:要使改建成的展示區的面積最大,的值為.本題考查余弦定理、直線與圓的位置關系、導數與函數最值的關系,考查考生的邏輯思維能力,運算求解能力,以及函數與方程的思想.19.(1);(2)【解析】

(1)將有兩個零點轉化為方程有兩個相異實根,令求導,利用其單調性和極值求解;(2)將問題轉化為對一切恒成立,令,求導,研究單調性,求出其最值即可得結果.【詳解】(1)有兩個零點關于的方程有兩個相異實根由,知有兩個零點有兩個相異實根.令,則,由得:,由得:,在單調遞增,在單調遞減,又當時,,當時,當時,有兩個零點時,實數的取值范圍為;(2)當時,,原命題等價于對一切恒成立對一切恒成立.令令,,則在上單增又,,使即①當時,,當時,,即在遞減,在遞增,由①知函數在單調遞增即,實數的取值范圍為.本題考查利用導數研究函數的單調性,極值,最

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論