




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
江蘇省南京鼓樓區重點達標名校2024屆中考數學全真模擬試題注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題(共10小題,每小題3分,共30分)1.如圖,正方形ABCD內接于圓O,AB=4,則圖中陰影部分的面積是()A. B. C. D.2.如圖:將一個矩形紙片,沿著折疊,使點分別落在點處.若,則的度數為()A. B. C. D.3.如圖,某小區計劃在一塊長為31m,寬為10m的矩形空地上修建三條同樣寬的道路,剩余的空地上種植草坪,使草坪的面積為570m1.若設道路的寬為xm,則下面所列方程正確的是()A.(31﹣1x)(10﹣x)=570 B.31x+1×10x=31×10﹣570C.(31﹣x)(10﹣x)=31×10﹣570 D.31x+1×10x﹣1x1=5704.如圖是一個幾何體的三視圖,則這個幾何體是()A. B. C. D.5.給出下列各數式,①②③④計算結果為負數的有()A.1個 B.2個 C.3個 D.4個6.﹣2×(﹣5)的值是()A.﹣7B.7C.﹣10D.107.近兩年,中國倡導的“一帶一路”為沿線國家創造了約180000個就業崗位,將180000用科學記數法表示為()A.1.8×105 B.1.8×104 C.0.18×106 D.18×1048.已知函數y=的圖象如圖,當x≥﹣1時,y的取值范圍是()A.y<﹣1 B.y≤﹣1 C.y≤﹣1或y>0 D.y<﹣1或y≥09.若正六邊形的邊長為6,則其外接圓半徑為()A.3 B.3 C.3 D.610.下列因式分解正確的是()A. B.C. D.二、填空題(本大題共6個小題,每小題3分,共18分)11.如圖,已知在△ABC中,∠A=40°,剪去∠A后成四邊形,∠1+∠2=______°.12.等腰梯形是__________對稱圖形.13.化簡:=_____.14.矩形ABCD中,AB=8,AD=6,E為BC邊上一點,將△ABE沿著AE翻折,點B落在點F處,當△EFC為直角三角形時BE=_____.15.已知AD、BE是△ABC的中線,AD、BE相交于點F,如果AD=6,那么AF的長是_____.16.化簡:______.三、解答題(共8題,共72分)17.(8分)在一個不透明的口袋里裝有四個球,這四個球上分別標記數字﹣3、﹣1、0、2,除數字不同外,這四個球沒有任何區別.從中任取一球,求該球上標記的數字為正數的概率;從中任取兩球,將兩球上標記的數字分別記為x、y,求點(x,y)位于第二象限的概率.18.(8分)某商場購進一種每件價格為90元的新商品,在商場試銷時發現:銷售單價x(元/件)與每天銷售量y(件)之間滿足如圖所示的關系.求出y與x之間的函數關系式;寫出每天的利潤W與銷售單價x之間的函數關系式,并求出售價定為多少時,每天獲得的利潤最大?最大利潤是多少?19.(8分)如圖1,在等邊三角形中,為中線,點在線段上運動,將線段繞點順時針旋轉,使得點的對應點落在射線上,連接,設(且).(1)當時,①在圖1中依題意畫出圖形,并求(用含的式子表示);②探究線段,,之間的數量關系,并加以證明;(2)當時,直接寫出線段,,之間的數量關系.20.(8分)先化簡,再求值:x(x+1)﹣(x+1)(x﹣1),其中x=1.21.(8分)在正方形ABCD中,動點E,F分別從D,C兩點同時出發,以相同的速度在直線DC,CB上移動.(1)如圖1,當點E在邊DC上自D向C移動,同時點F在邊CB上自C向B移動時,連接AE和DF交于點P,請你寫出AE與DF的數量關系和位置關系,并說明理由;(2)如圖2,當E,F分別在邊CD,BC的延長線上移動時,連接AE,DF,(1)中的結論還成立嗎?(請你直接回答“是”或“否”,不需證明);連接AC,請你直接寫出△ACE為等腰三角形時CE:CD的值;(3)如圖3,當E,F分別在直線DC,CB上移動時,連接AE和DF交于點P,由于點E,F的移動,使得點P也隨之運動,請你畫出點P運動路徑的草圖.若AD=2,試求出線段CP的最大值.22.(10分)如圖所示,AB是⊙O的一條弦,OD⊥AB,垂足為C,交⊙O于點D,點E在⊙O上.若∠AOD=52°,求∠DEB的度數;若OC=3,OA=5,求AB的長.23.(12分)如圖,AB∥CD,∠1=∠2,求證:AM∥CN24.如圖,在平面直角坐標系中,OA⊥OB,AB⊥x軸于點C,點A(,1)在反比例函數y=的圖象上.(1)求反比例函數y=的表達式;(2)在x軸上是否存在一點P,使得S△AOP=S△AOB,若存在,求所有符合條件點P的坐標;若不存在,簡述你的理由.
參考答案一、選擇題(共10小題,每小題3分,共30分)1、B【解析】
連接OA、OB,利用正方形的性質得出OA=ABcos45°=2,根據陰影部分的面積=S⊙O-S正方形ABCD列式計算可得.【詳解】解:連接OA、OB,∵四邊形ABCD是正方形,∴∠AOB=90°,∠OAB=45°,∴OA=ABcos45°=4×=2,所以陰影部分的面積=S⊙O-S正方形ABCD=π×(2)2-4×4=8π-1.故選B.【點睛】本題主要考查扇形的面積計算,解題的關鍵是熟練掌握正方形的性質和圓的面積公式.2、B【解析】根據折疊前后對應角相等可知.
解:設∠ABE=x,
根據折疊前后角相等可知,∠C1BE=∠CBE=50°+x,
所以50°+x+x=90°,
解得x=20°.
故選B.“點睛”本題考查圖形的翻折變換,解題過程中應注意折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,如本題中折疊前后角相等.3、A【解析】六塊矩形空地正好能拼成一個矩形,設道路的寬為xm,根據草坪的面積是570m1,即可列出方程:(31?1x)(10?x)=570,故選A.4、B【解析】試題分析:結合三個視圖發現,應該是由一個正方體在一個角上挖去一個小正方體,且小正方體的位置應該在右上角,故選B.考點:由三視圖判斷幾何體.5、B【解析】∵①;②;③;④;∴上述各式中計算結果為負數的有2個.故選B.6、D【解析】
根據有理數乘法法則計算.【詳解】﹣2×(﹣5)=+(2×5)=10.故選D.【點睛】考查了有理數的乘法法則,(1)兩數相乘,同號得正,異號得負,并把絕對值相乘;(2)任何數同0相乘,都得0;(3)幾個不等于0的數相乘,積的符號由負因數的個數決定,當負因數有奇數個時,積為負;當負因數有偶數個時,積為正;(4)幾個數相乘,有一個因數為0時,積為0.7、A【解析】
科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值>1時,n是正數;當原數的絕對值<1時,n是負數.【詳解】180000=1.8×105,故選A.【點睛】本題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.8、C【解析】試題分析:根據反比例函數的性質,再結合函數的圖象即可解答本題.解:根據反比例函數的性質和圖象顯示可知:此函數為減函數,x≥-1時,在第三象限內y的取值范圍是y≤-1;在第一象限內y的取值范圍是y>1.故選C.考點:本題考查了反比例函數的性質點評:此類試題屬于難度一般的試題,考生在解答此類試題時一定要注意分析反比例函數的基本性質和知識,反比例函數y=的圖象是雙曲線,當k>1時,圖象在一、三象限,在每個象限內y隨x的增大而減小;當k<1時,圖象在二、四象限,在每個象限內,y隨x的增大而增大9、D【解析】
連接正六邊形的中心和各頂點,得到六個全等的正三角形,于是可知正六邊形的邊長等于正三角形的邊長,為正六邊形的外接圓半徑.【詳解】如圖為正六邊形的外接圓,ABCDEF是正六邊形,∴∠AOF=10°,∵OA=OF,∴△AOF是等邊三角形,∴OA=AF=1.所以正六邊形的外接圓半徑等于邊長,即其外接圓半徑為1.故選D.【點睛】本題考查了正六邊形的外接圓的知識,解題的關鍵是畫出圖形,找出線段之間的關系.10、C【解析】
依據因式分解的定義以及提公因式法和公式法,即可得到正確結論.【詳解】解:D選項中,多項式x2-x+2在實數范圍內不能因式分解;
選項B,A中的等式不成立;
選項C中,2x2-2=2(x2-1)=2(x+1)(x-1),正確.
故選C.【點睛】本題考查因式分解,解決問題的關鍵是掌握提公因式法和公式法的方法.二、填空題(本大題共6個小題,每小題3分,共18分)11、220.【解析】試題分析:△ABC中,∠A=40°,=;如圖,剪去∠A后成四邊形∠1+∠2+=;∠1+∠2=220°考點:內角和定理點評:本題考查三角形、四邊形的內角和定理,掌握內角和定理是解本題的關鍵12、軸【解析】
根據軸對稱圖形的概念,等腰梯形是軸對稱圖形,且有1條對稱軸,即底邊的垂直平分線.【詳解】畫圖如下:結合圖形,根據軸對稱的定義及等腰梯形的特征可知,等腰梯形是軸對稱圖形.故答案為:軸【點睛】本題考查了關于軸對稱的定義,運用定義會進行判斷一個圖形是不是軸對稱圖形.13、【解析】
直接利用二次根式的性質化簡求出答案.【詳解】,故答案為.【點睛】本題考查了二次根式的性質與化簡,正確掌握二次根式的性質是解題的關鍵.14、3或1【解析】
分當點F落在矩形內部時和當點F落在AD邊上時兩種情況求BE得長即可.【詳解】當△CEF為直角三角形時,有兩種情況:當點F落在矩形內部時,如圖1所示.連結AC,在Rt△ABC中,AB=1,BC=8,∴AC==10,∵∠B沿AE折疊,使點B落在點F處,∴∠AFE=∠B=90°,當△CEF為直角三角形時,只能得到∠EFC=90°,∴點A、F、C共線,即∠B沿AE折疊,使點B落在對角線AC上的點F處,如圖,∴EB=EF,AB=AF=1,∴CF=10﹣1=4,設BE=x,則EF=x,CE=8﹣x,在Rt△CEF中,∵EF2+CF2=CE2,∴x2+42=(8﹣x)2,解得x=3,∴BE=3;②當點F落在AD邊上時,如圖2所示.此時ABEF為正方形,∴BE=AB=1.綜上所述,BE的長為3或1.故答案為3或1.【點睛】本題考查了矩形的性質、圖形的折疊變換、勾股定理的應用等知識點,解題時要注意分情況討論.15、4【解析】由三角形的重心的概念和性質,由AD、BE為△ABC的中線,且AD與BE相交于點F,可知F點是三角形ABC的重心,可得AF=AD=×6=4.故答案為4.點睛:此題考查了重心的概念和性質:三角形的重心是三角形三條中線的交點,且重心到頂點的距離是它到對邊中點的距離的2倍.16、3【解析】分析:根據算術平方根的概念求解即可.詳解:因為32=9所以=3.故答案為3.點睛:此題主要考查了算術平方根的意義,關鍵是確定被開方數是哪個正數的平方.三、解答題(共8題,共72分)17、(1);(2).【解析】
(1)直接根據概率公式求解;
(2)先利用樹狀圖展示所有12種等可能的結果數,再找出第二象限內的點的個數,然后根據概率公式計算點(x,y)位于第二象限的概率.【詳解】(1)正數為2,所以該球上標記的數字為正數的概率為;(2)畫樹狀圖為:共有12種等可能的結果數,它們是(﹣3,﹣1)、(﹣3,0)、(﹣3,2)、(﹣1,0)、(﹣1,2)、(0,2)、(﹣1,﹣3)、(0,﹣3)、(2,﹣3)、(0,﹣1)、(2,﹣1)、(2,0),其中第二象限的點有2個,所以點(x,y)位于第二象限的概率==.【點睛】本題考查列表法與樹狀圖法:利用列表法或樹狀圖法展示所有可能的結果求出n,再從中選出符合事件A或B的結果數目m,求出概率.18、(1)y=-x+170;(2)W=﹣x2+260x﹣1530,售價定為130元時,每天獲得的利潤最大,最大利潤是2元.【解析】
(1)先利用待定系數法求一次函數解析式;(2)用每件的利潤乘以銷售量得到每天的利潤W,即W=(x﹣90)(﹣x+170),然后根據二次函數的性質解決問題.【詳解】(1)設y與x之間的函數關系式為y=kx+b,根據題意得:,解得:,∴y與x之間的函數關系式為y=﹣x+170;(2)W=(x﹣90)(﹣x+170)=﹣x2+260x﹣1.∵W=﹣x2+260x﹣1=﹣(x﹣130)2+2,而a=﹣1<0,∴當x=130時,W有最大值2.答:售價定為130元時,每天獲得的利潤最大,最大利潤是2元.【點睛】本題考查了二次函數的應用:利用二次函數解決利潤問題,先利用利潤=每件的利潤乘以銷售量構建二次函數關系式,然后根據二次函數的性質求二次函數的最值,一定要注意自變量x的取值范圍.19、(1)①;②;(2)【解析】
(1)①先根據等邊三角形的性質的,進而得出,最后用三角形的內角和定理即可得出結論;②先判斷出,得出,再判斷出是底角為30度的等腰三角形,再構造出直角三角形即可得出結論;(2)同②的方法即可得出結論.【詳解】(1)當時,①畫出的圖形如圖1所示,∵為等邊三角形,∴.∵為等邊三角形的中線∴是的垂直平分線,∵為線段上的點,∴.∵,∴,.∵線段為線段繞點順時針旋轉所得,∴.∴.∴,∴;②;如圖2,延長到點,使得,連接,作于點.∵,點在上,∴.∵點在的延長線上,,∴.∴.又∵,,∴.∴.∵于點,∴,.∵在等邊三角形中,為中線,點在上,∴,即為底角為的等腰三角形.∴.∴.(2)如圖3,當時,在上取一點使,∵為等邊三角形,∴.∵為等邊三角形的中線,∵為線段上的點,∴是的垂直平分線,∴.∵,∴,.∵線段為線段繞點順時針旋轉所得,∴.∴.∴,又∵,,∴.∴.∵于點,∴,.∵在等邊三角形中,為中線,點在上,∴,∴.∴.【點睛】此題是幾何變換綜合題,主要考查了等邊三角形的性質,三角形的內角和定理,全等三角形的判定和性質,等腰三角形的判定和性質,銳角三角函數,作出輔助線構造出全等三角形是解本題的關鍵.20、x+1,2.【解析】
先根據單項式乘以多項式的運算法則、平方差公式計算后,再去掉括號,合并同類項化為最簡后代入求值即可.【詳解】原式=x2+x﹣(x2﹣1)=x2+x﹣x2+1=x+1,當x=1時,原式=2.【點睛】本題考查了整式的化簡求值,根據整式的運算法則先把知識化為最簡是解決問題的關鍵.21、(1)AE=DF,AE⊥DF,理由見解析;(2)成立,CE:CD=或2;(3)【解析】試題分析:(1)根據正方形的性質,由SAS先證得△ADE≌△DCF.由全等三角形的性質得AE=DF,∠DAE=∠CDF,再由等角的余角相等可得AE⊥DF;(2)有兩種情況:①當AC=CE時,設正方形ABCD的邊長為a,由勾股定理求出AC=CE=a即可;②當AE=AC時,設正方形的邊長為a,由勾股定理求出AC=AE=a,根據正方形的性質知∠ADC=90°,然后根據等腰三角形的性質得出DE=CD=a即可;(3)由(1)(2)知:點P的路徑是一段以AD為直徑的圓,設AD的中點為Q,連接QC交弧于點P,此時CP的長度最大,再由勾股定理可得QC的長,再求CP即可.試題解析:(1)AE=DF,AE⊥DF,理由是:∵四邊形ABCD是正方形,∴AD=DC,∠ADE=∠DCF=90°,∵動點E,F分別從D,C兩點同時出發,以相同的速度在直線DC,CB上移動,∴DE=CF,在△ADE和△DCF中,∴,∴AE=DF,∠DAE=∠FDC,∵∠ADE=90°,∴∠ADP+∠CDF=90°,∴∠ADP+∠DAE=90°,∴∠APD=180°-90°=90°,∴AE⊥DF;(2)(1)中的結論還成立,有兩種情況:①如圖1,當AC=CE時,設正方形ABCD的邊長為a,由勾股定理得,,則;②如圖2,當AE=AC時,設正方形ABCD的邊長為a,由勾股定理得:,∵四邊形ABCD是正方形,∴∠ADC=90°,即AD⊥CE,∴DE=CD=a,∴CE:CD=2a:a=2;即CE:CD=或2;(3)∵點P在運動中保持∠APD=90°,∴點P的路徑是以AD為直徑的圓,如圖3,設AD的中點為Q,連接CQ并延長交圓弧于點P,此時CP的長度最大,∵在Rt△QDC中,∴,即線段CP的最大值是.點睛:此題主要考查了正方形的性質,勾股定理,圓周角定理,全等三角形的性質與判定,等腰三角形的性質,三角形的內角和定理,能綜合運用性質進行推擠是解此題的關鍵,用了分類討論思想,難度偏大.22、
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 合同變更條款解析3篇
- 磷肥生產設備故障分析與維護保養操作考考核試卷
- 皮鞋制作中的自動化縫制技術與設備考核試卷
- 水產品冷凍加工中的食品安全監測與預警機制考核試卷
- 皮革物理性能提升技術考核試卷
- 肥料生產安全與環保措施考核試卷
- 2025北京房地產交易合同
- 2025自動化控制系統配電柜合同
- 2025租賃合同必須具備的合同條款
- 2025勞務分包合同(鋼筋工)
- JTJ-294-1998斜坡碼頭及浮碼頭設計與施工規范
- 急性肺栓塞的應急預案及流程
- 醫用被服洗滌服務方案
- 蓄水池可行性方案
- 政務服務中心物業服務投標方案
- 小兒循環系統解剖生理特點
- 青島海爾納稅籌劃課程設計
- 小學動詞三單練習
- 【葛根素的藥理作用及臨床應用調研報告3000字】
- 居民自建樁安裝告知書回執
- 教師情緒和壓力疏導
評論
0/150
提交評論