許疃煤礦1.2Mt-a新井設(shè)計-離層分區(qū)注漿減沉技術(shù)在許疃煤礦應(yīng)用探討_第1頁
許疃煤礦1.2Mt-a新井設(shè)計-離層分區(qū)注漿減沉技術(shù)在許疃煤礦應(yīng)用探討_第2頁
許疃煤礦1.2Mt-a新井設(shè)計-離層分區(qū)注漿減沉技術(shù)在許疃煤礦應(yīng)用探討_第3頁
許疃煤礦1.2Mt-a新井設(shè)計-離層分區(qū)注漿減沉技術(shù)在許疃煤礦應(yīng)用探討_第4頁
許疃煤礦1.2Mt-a新井設(shè)計-離層分區(qū)注漿減沉技術(shù)在許疃煤礦應(yīng)用探討_第5頁
已閱讀5頁,還剩144頁未讀 繼續(xù)免費(fèi)閱讀

下載本文檔

版權(quán)說明:本文檔由用戶提供并上傳,收益歸屬內(nèi)容提供方,若內(nèi)容存在侵權(quán),請進(jìn)行舉報或認(rèn)領(lǐng)

文檔簡介

本科生畢業(yè)設(shè)計(論文)題目:許疃煤礦1.2Mt/a新井設(shè)計離層分區(qū)注漿減沉技術(shù)在許疃煤礦應(yīng)用探討本科生畢業(yè)設(shè)計學(xué)院:礦業(yè)工程專業(yè):采礦工程設(shè)計題目:許疃煤礦1.2Mt/a新井設(shè)計專題:離層分區(qū)注漿減沉技術(shù)在許疃煤礦應(yīng)用探討畢業(yè)論文題目:許疃煤礦1.2Mt/a新井設(shè)計畢業(yè)論文專題題目:離層分區(qū)注漿減沉技術(shù)在許疃煤礦應(yīng)用探討畢業(yè)論文主要內(nèi)容和要求:根據(jù)采礦工程專業(yè)畢業(yè)設(shè)計大綱,本畢業(yè)設(shè)計分為一般部分、專題部分和翻譯部分,具體包括:1、一般部分:許疃煤礦1.2Mt/a新井設(shè)計,主要內(nèi)容包括:礦井概況、礦井工作制度及設(shè)計生產(chǎn)能力、井田開拓、首采區(qū)設(shè)計、采煤方法、礦井通風(fēng)系統(tǒng)、礦井運(yùn)輸提升等。2、專題部分:離層分區(qū)注漿減沉技術(shù)在許疃煤礦應(yīng)用探討。3、翻譯部分:完成近3-5年國外期刊上與采礦或煤礦安全有關(guān)的科技論文翻譯一篇,要求不少于3000字符。大學(xué)畢業(yè)論文答辯及綜合成績答辯情況提出問題回答問題答辯委員會評語及建議成績:答辯委員會主任簽字:年月日學(xué)院領(lǐng)導(dǎo)小組綜合評定成績:學(xué)院領(lǐng)導(dǎo)小組負(fù)責(zé)人:年月日

摘要本設(shè)計包括三個部分:一般部分、專題部分和翻譯部分。一般部分為許疃煤礦1.2Mt/a新井設(shè)計。許疃煤礦位于安徽省宿州市,地處平原,土地肥沃,農(nóng)作物生長良好。井田南北走向長6.27~6.47km,東西傾向?qū)?.11~3.73km,井田面積約19.94km2。井田內(nèi)主要可采煤層72煤層,傾角6.6~15.5°,平均厚度3m。礦井工業(yè)儲量為123.56Mt,可采儲量為85.74MtMt,設(shè)計服務(wù)年限54.9a。礦井正常涌水量為1050m3/h,最大涌水量為1660m3/h。礦井相對瓦斯涌出量為22m3/t,最大絕對瓦斯涌出量為64.83m3/min,屬高瓦斯礦井。煤層屬可能自然發(fā)火煤層,煤塵有爆炸危險性。根據(jù)礦區(qū)及井田地質(zhì)條件,設(shè)計采用立井單水平開拓方式。上山布置帶區(qū),斷層上盤布置采區(qū),全井田共劃分為四個帶區(qū),一個兩翼采區(qū),一個單翼采區(qū)。軌道大巷、膠帶機(jī)大巷和回風(fēng)大巷根據(jù)服務(wù)年限布置在煤層或巖層。本礦井為高瓦斯礦井,設(shè)置專用回風(fēng)井巷,并預(yù)掘底板瓦斯抽排巷進(jìn)行瓦斯卸壓抽放,礦井通風(fēng)方式采用中央并列式。針對涌水量大,大巷均向井底車場微斜自然排水,下山上行開采,后期向采空區(qū)排水。首采區(qū)帶區(qū)式準(zhǔn)備,工作面設(shè)計長度220m,采用綜合機(jī)械化采煤工藝。礦井年工作日為330d,晝夜凈提升時間為18h。礦井采用“四六”制工作制度,三班生產(chǎn),一班檢修。生產(chǎn)班每班完成2個采煤循環(huán)。循環(huán)進(jìn)尺為0.8m,日產(chǎn)量為4243.54t。礦井煤炭采用膠帶輸送機(jī)運(yùn)輸,輔助運(yùn)輸采用DLZ110F柴油機(jī)單軌吊。主井采用一對12t底卸式箕斗提煤,副井采用多繩摩擦式提升機(jī)提升一窄(1.02)一寬(1.67)罐籠。專題部分題目為:離層分區(qū)注漿減沉技術(shù)在許疃煤礦應(yīng)用探討。在綠色開采及科學(xué)采礦理念的指導(dǎo)下,結(jié)合許疃煤礦覆巖特征及“三下”壓煤狀況,提出對高采出率下減緩地表下沉技術(shù)的探索。運(yùn)用數(shù)值模擬方法對離層區(qū)注漿減沉技術(shù)在許疃煤礦的使用進(jìn)行了分析探討。設(shè)計工作面長160m,關(guān)鍵層下巖層可達(dá)超充分采動狀態(tài);離層區(qū)充填體分擔(dān)了部分覆巖載荷,分區(qū)煤柱應(yīng)力集中明顯減小;分區(qū)間跳采,因跳采出現(xiàn)的孤島工作面待兩側(cè)離層區(qū)充填穩(wěn)定后仍用離層區(qū)充填方法開采,數(shù)值模擬結(jié)果表明此方法可以有效減緩地表沉陷、提高資源開采率。翻譯部分主要講述了爆破卸壓的應(yīng)用現(xiàn)狀,包括地質(zhì)、巖石性質(zhì)、開采條件和爆破參數(shù)(炮孔布置、孔深、爆破載荷等),討論了爆破卸壓的優(yōu)勢并對其作為解決高采動應(yīng)力引起沖擊礦壓的效果進(jìn)行了評價,英文題目為:DestressBlastinginCoalMining–State-of-the-ArtReview。關(guān)鍵詞:許疃煤礦;立井單水平;瓦斯卸壓抽放;下山上行開采;單軌吊;F5逆斷層;變頻對旋式通風(fēng)機(jī);離層區(qū);數(shù)值模擬;爆破卸壓 ABSTRACTThisdesignincludesthreeparts:thegeneraldesign,themonographicstudyandthetranslation.Thegeneraldesignisabouta1.2Mt/anewundergroundminedesignofXutuanCoalMine.XutuanCoalMineliesinSuzhouCity,Anhuiprovince,wheresoilisflatandfertile.It’sabout6.27~6.47kmonthestrikeand3.11~3.73kmonthedip,withthe19.94km2totalarea.Themainaquifercoalseamis72coalseamwithanaveragethicknessof3m,andthedipis6.6~15.5°.Theprovedreservesofthiscoalmineare123.56Mtandtheminablereservesare85.74Mt,withaminelifeof54.9years.Thenormalmineinflowis1050m3/handthemaximummineinflowis1660m3/h.Theminerelativegasemissionquantityis22m3/t,andtheabsolutegasemissionquantityis64.83m3/min.Thecoalseamisfeasiblespontaneouscombustioncoalseamandthecoaldusthasexplosionhazard.Basedonthegeologicalconditionofthemine,thisdesignusesaverticalshaftsingle-leveldevelopmentmethod,whichdividedintofourbandsandtwodistricts,andtrackroadway,beltconveyorroadwayandreturnairwayaredifferentondifferentlifetime,arrangedinthefloorrockorcoalseam.Takingintoaccountofthehighgasemission,setupdedicatedroadwayforventilation,andexcavesbottomgasdrainageroadwaytoreliefgaspressure,mineventilationmethoduseCentralabreastventilation.inconnectionofbigwaterinflow,roadwaytiltstotheshaftbottomtofacilitatedrainage,ascendingminingisadoptedinthedistrictdip,takeadvantageofgoaffordrainage.Designedfirstminingdistrictmakesuseofthemethodofthestripdistrictpreparation.Thedesignlengthofworkingfaceis220m,whichusesfullymechanizedminingtechnology.Theworkingdaysinoneyearare330.Everydayittakes18hoursinliftingthecoal.Theoperationmodeinthemineis“four-six”withthreeteamsminingandtheotheroverhauling.Everyminingteammakestwoworkingcycle.Soeverydaythereare6workingcycles.Theadvanceofaworkingcycleis0.8m,andthequantityof4243.54toncoalismakedeveryday.Mainroadwaymakesuseofbeltconveyortotransportcoalresource,andoverheadmonorailtobeassistanttransport.Themainshaftusesadouble12tskipstoliftcoalandtheauxiliaryshaftusestwocage,oneis1.02mandtheotheris1.67m.Themonographicstudyentitled“ApplicationofisolatedsectiongroutingtechnologyforoverburdenbedseparationspaceinXutuancoalmine”.Undertheguidanceofconceptofgreenminingandscientificmining,inconnctionofcharacteristicofXutuan,exploringawaytoreducesubsidencewithahighrecovery.Studidbynumericalsimulation.Thelengthofwokingfaceis160m,rockstatumunderthekeystatumcanbefullmining;intermsofbackfillsharessomestress,coalpillarstresswassignificantlyreduced.skip-miningamoneisolatedsection,islandminingfacewasminedafterstabilityofbothsidesofgob.Thenumericalresultsshowthatthismethodcaneffectivelyreduceminingsubsidence,increasethecoalrecovery.Thetranslatedacademicpaperpresentsastate-of-the-artreviewofdestressblastingincoalmining.Informationsuchasgeology,rockproperties,miningconditionsaswellasblastingparameterssuchasblastholelayout,holelength,explosiveloadingetc.arepresented.Thepaperdiscussesthemainbenefitsofdestressblastingandtheevaluationofitseffectivenessasameasuretoovercomethechallengesofhighmining-inducedstressescausingcoalbumpsandrockbursts.Thetitleis“DestressBlastinginCoalMining–State-of-the-ArtReview”.Keywords:Xutuancoalmine;shaftsingle-leveldevelopment;gasdrainageandreliefgaspressure;ascendingmininginthedistrictdip;overheadmonorail;F5reversefault;rotatingfanwithfrequenceconvision;overburdenbedseparationspace;numericalsimulation;DestressBlasting

目錄一般部分1礦區(qū)概況與井田地質(zhì)特征 頁英文原文DestressBlastinginCoalMining–State-of-the-ArtReviewPetrKonicek1,*,ManiRamSaharan2,HaniMitri31InstituteofGeonicsAcademyofSciencesoftheCzechRepublic,Studentska1768,70800Ostrava-Poruba,CzechRepublic,2CentralInstituteofMining&FuelResearch(CIMFR),SeminaryHills,Nagpur,India,3McGillUniversity,Montreal,Quebec,CanadaH3A2A7Abstract:Coalmineworkingscontinuetofacethechallengesofcoalbumpsandrockburstscausedbyhighmining-inducedstressesduetohighoverburdenpressuresassociatedwiththeextractionofbrittle,lowstrengthcoalseams.Despiteofthefactthatdestressblastinghasbeenappliedforalmostacentury,itisstillnotapopularchoice.Thispaperpresentsastate-of-the-artreviewofdestressblastingincoalmining.Informationsuchasgeology,rockproperties,miningconditionsaswellasblastingparameterssuchasblastholelayout,holelength,explosiveloadingetc.arepresented.Thepaperdiscussesthemainbenefitsofdestressblastingandtheevaluationofitseffectivenessasameasuretoovercomethechallengesofhighmining-inducedstressescausingcoalbumpsandrockbursts.Keywords:Mining,Coal,DestressBlasting1.IntroductionItiselementarybutimportanttoillustratethatanundergroundexcavationinitiatesaprocessofreequilibrium,whichleadstothegenerationofstressesaroundtheexcavationinamannerthatfreesurfacesbecomeplanesforprincipalstressesandexperienceabi-axialstateofstresscondition.Theexcavationboundariesmayexperiencedamageeffectsduetostressesandtheseeffectsforcoalminescanbedislocationofrockreinforcement,interbedcrossoveroflaminatedroofrockmass,cutterfailure,floorheaveand/orrockburst/coalbump(Fig1).Thesedamagingeffectsarepresentedintheorderoftheirseverityaccordingtothestresslevel,correspondingstrength(uniaxialandpoly-axial)atthepointofconsiderationofthestressloading.Excessofthestresslevelincomparisontothestrengthandtherateatwhichtheexcessisattainedduringthere-equilibriumprocessismanifestedintothedifferentdamagingeffectsasillustratedinFigure1.Afasterrateinobtainingexcessstresseswillresultintorockburst/coalbump.Occurrenceofthisexcessstressoveragreaterareawillincreasetheseverityofthedamagingeffects.Further,partoftheexcavationexperiencesstressconcentrationandanotherexperiencesstressrelaxationduetotheshapeoftheopeningandinsitustressdirections.abcdFig1.(a)RockboltdislocationinanIndiancoalmine;(b)InterbedcrossoverinacoalmineofSouthAfrica[1];(c)CutterrooffailureinanUScoalmine[2];(d)RockburstinaGermancoalmine[3].Pastresearchformeasurementofstresses,understandingofstressesandpredictionofthetimingwhenandtherateatwhichthestresseswillbeinexcessofthestrengthhasbeenamixedsuccess.Theminingprocesshas,inthemeantime,becomefaster,largerandbeingdoneatdeeperlevels.Itisthusnecessarythatprotectivemeasuresbeevolvedtodealwiththedamagingeffectsofexcessivestresses.Figure2illustratesdifferentmethodsevolvedtodealwiththedamagingeffectsofexcessivestressesanddistressblastingisoneoftheoldestandproactivemeasuresamongsttheothermethods[4].Themechanismofdestressblastingisnotwellunderstooddespiteoftheapplicationofdestressblastinginawiderangeofminingconditionsandobjectives.Thepaperpresentsvariousconditionsforwhichdestressblastingisappliedfordeepcoalminesanddiscussesthepossibilitiestofurtherimprovethemethod.Theapplicationofdestressblastingisaimedintothezonesofstressconcentrationinsuchamannerthatthestressconcentrationzoneshiftedinteriortotherockmassthusleavingaprotectivebarrierbetweentheworkforceandthestressconcentrationzone.ThismechanismofdestressblastingisillustratedinFigure3,whichdemonstratethatdestressblastingshiftsstressconcentrationzoneawayfromtheactiveworkingfront.Fig.2.Methodstoreducedamagingeffectsofexcessivestresses[4]Fig.3.Geomechanicseffectsofdestressblasting[5]2.NaturalandminingconditionsHardcoaldepositsaremostlycomplexsedimentarysequencescontainingcoalseams(multiseamdeposits)inUpperPaleozoicage.Rocksbetweencoalseamscompriseshale,mudstones,siltstones,sandstonesandconglomerates.Thicknessofcoalbearingstratarangesfromhundredstothousandsofmeters,whereasthethicknessofcoalseamsvariesfrom1totensofmeters.Thefeaturemostcommonwherecutterrooffailureorfloorheaveoccursisthepresenceofthinlylaminatedroof/floor.Thefeaturemostcommontoseamsinwhichrockburstoccuristhecloseproximitytoastrong,thickandrigidstratum[3].Thesestrataconsistofsandstonesandconglomeratesinmostcoalfieldsandinrarecasestheyconsistofothertypesofgeologicalmaterialsandcanbedefinedascompetentmassiveelasticrock[6].TypicalexamplesofrockburstpronestrataaredescribedinFig4.SummaryofthebasicrockpropertiesofcarboniferousrocksisillustratedthroughTable1[3,7].Itisalsoimportanttounderstandthatcoalbearingstratahaveverydifficultstructuraltectonicpattern[14]withverycomplicatednaturalstressfieldandcombinationofthesecausesstressdamages[7,8,9,10].Fig.4.Typicalpropertiesofcarboniferousrockmasswithcompetentrocklayers(A)LazyColliery(theCzechpartofUSCB);(B)Germany[11];(C)ChinakuriColliery(India)[12]Table1.Rockproperties*RockUCS[MPa]RQD[%]Bedthickness[m](competentrocks)Coal10–30--Mudstones35–65--Siltstones40–15060–905–10Sandstones50–17060–9010–100Conglomerates40–14060–905–20*GeneralizeddatafromCzech,German,Indian,Polish,UkraineandUSACollieries[3,7,11,52]Miningconditionsinfluencetherockmassresponseandstressconcentration.Someoftheseconditionsarelistedbelow.?miningwithinmorethanonecoalseamsseparatedtoeachotherby3mtoabout100m,?extractionthicknessandsizeoftheopenings,?protective/unminedpillarsincoalseams,?partunminedoverlyingseams,?advancerateofmining,?differentadvancedirectioninoverlyingseams,and?improperlysuperimposedmininglayoutsinmulti-seamminingTypicalexampleofcomplicatedmininghistoryispresentedinFig.5,whichwaspublishedbyDvorskyetal.[47].Figure5representstimesequenceofmininginareaof4thminingblockinCSACollieryintheCzechpartoftheUpperSilesianCoalBasin(USCB).TheschemeofmininginthelevelofseamNo.530whichwasminedwithmanyoverlyingseamsindifferentdirections(Fig.5showsonlyfourofthem)isillustrated.Overlyingseamshadmanyunminedpillarsthatwereleftinthecentralpartoftheminingblockduetoatectonicfaultoccurrence.Theminingconditionswerefurthercompoundedduetochangingofminingdirectioninwestandeastpartofminingblock.ThiscomplicatedminingsituationtogetherwithverydifficultnaturalconditionscausedmanyrockburstwhileminingtheseamNo.530[47,15].Fig.5.Schematicmapoftimesequenceofminingofparticularlongwallsinareaof4thminingblock(seamNo530)ofCSACollieryintheCzechpartoftheUSCB;adjustedafter[47].Numerousminingcasestudiesofexcessivedamagesfrominducedstressescanbepresentedfrommanyminingregionsacrosscontinents,suchasAustralia[16],CzechRepublic[,15,17,18,47],Germany[3,11,19,20],Poland[21,22,23,37],USA[24],China[25,26]andIndia[27].3.DestressblastingasproactivemeasureDestressblastingincoalseamsorimmediateroofandfloorrockmasshasbeenadoptedtomanagecutterrooffailure,floorheaveandrockburst/coalbump.Theobjectivehasbeentoshiftexcessiveinducedstressestotheinteriorrockmassandtoprovideaprotectivebarriersurroundingtheexcavation.Threetypicalconditions,forwhichdestressblastinghasbeenadopted,areillustratedinFigure6.Theseusedestressblastingtoavoidcutterrooffailure,floorheaveandrockburst.MajorprincipalstressforthecasesshowninFigure6ishorizontalexceptforthecaseoflongwallminingwheremajorprincipalstressfromverticaldirectionisthecauseofconcern.Thesecasestypicallyusefarthestonethirdlengthoftheboreholechargedwithpermittedexplosive(singlecartridgepermetreofthechargelength)andboreholelengthdesignedsuchthattheexplosivecolumnbeginsatleast3mor1.5timestheexcavationheightfromtheboreholecollar[3].Theconditionunderwhichdestressblastingisrequiredandthelocationofdestressblastingisdeterminedfromdrillingrateandnoiseoftestdrillholes.Theeffectivenessofdistressblastingismeasuredfromchangeinsupportpressureandrateofconvergenceofroof/floorrockmass.Successfulapplicationofdestressblastingundersuchconditionsrequiresthatitshallbepracticedonregularbasisandbeapartofroutineminingcycle.Kexin[25]andXiaetal.[26]describeapplicationofdestressblastingtocontrolfloorheavefordeepcoalminesinChina.ThedestressblastinginvolveapatternandobjectiveconsistentTable2–parametersofboreholepatternfordestressblastinginthetestgallery[25]LayoutBoreholeChargingTestsectionpatternRowspacing,mToespacing,mColumnspacing,mSpacing,mDepth,mOrient-ationCharging,mMudstemming,m12row,3holeinflowerpattern4.7┴towallLeft1.6Left3.1Right1.9Right3.822deephole,1shallowholeDeephole4.2Deephole1.5Deephole2.7Shallowhole3.2Shallowhole0.7Shallowhole2.532row3holeinflowerpattern4.10.9-1.83.2-2.342linerow4.30.4-1.23.9-3.1withtheFigure6(b).DetailsofthepatternreportedbyKexin[25]isgiveninTable2.Thedestressblastingprogramreportedtobeasuccessinthemine.(a)Systemofdestressblastingtolimitcutterrooffailure(b)Systemofdestressblastingtolimitfloorheave(c)SystemofdestressblastingtolimitrockburstingatedrivingandlongwallminingFig.6.DestressblastingasproactivemeasurefordifferentobjectivesDestresscoalblastingissimilarlyusedtoalleviaterockburstsproblemsinPolishandCzechCollieriesbutalsoinGermancollieriesinthepast[18,19,28,29,30,31,32,33].Atypicaldestressblastingpracticeset-upisshowninfig.6(c)[29].Lengthofboreholesusedfordestressblastingdependsonsizeofprotectiveareawhichiscreatedaheadofafaceandthisisafunctionofthicknessofcoalseam,sizeofpillars,miningdepthandlocked-instressesinimmediateroofrocks(principlesarepresentedinFigure3).InPolishcollieries,lengthofboreholesisusuallyupto10m,diameterofboreholesdonotexceed80mm(usually42mm).Generallywecanquotethatsmallcharges(max.2.5kgsafetyexplosiveperborehole)areusedforboreholesindicatingexcessivestressstate.However,consumptionofblastingmaterialon1moflongwalladvanceisreportedabout80kg[28].Combinedsystemisfrequentlyusedindriving–destressblastingandcutblastingtogetherwherelengthofboreholesandexplosivechargearesmaller[28],lengthofboreholesfrom1.2to2.4mandexplosivechargeisfrom300gto1200gperborehole.Maximumwaitingtimeafterdestressblastingincoalseamis30minutes.InCzechCollieriesthelengthofboreholeislarger(upto20m),diameterofboreholes(42mm)andspacingofboreholes(max.5mindrivingofroadways,max.15minlogwallface)arestrictlygiven.Explosivechargeislarger(from2.5to7.5kgperborehole,i.e.50%–60%lengthofborehole).Maximumweightofexplosivechargeis180kgperdestressblastingstage.Combinationofdistressblastingincoalseamsanddestressdrillingaresometimesused[45];indrivingdestressboreholesinthefaceanddestressblastinginsidesofgates;inminingdestressboreholesfromgatewaysandtherestofthelongwallface–destressblasting.TypicalexampleofdestressblastinginCzechcollieriesispresentedinFigure6(c).InGermancollieries,destressdrilling(orslotting)ispreferredoverdestressblastinginmostcases.Rockburstphenomenaareobservedincoalseamsonly,anddestressdrillingisbelievedtobemoreeffective[46].ItisnoteworthythatthethicknessofcoalseamsinGermancollieriesgenerallydoesnotexceed3.5m.Generally,coaldepositsarefoundinmulti-seamseparatedfromeachotherby3m(termedascontiguousseams)tofewtensofmetersandtheyworkedinsequencefromtoptobottomexceptcontiguousseams.Oftenenough,partoftheupperseamisnotmineableandisletbehind.Miningoftheseambelowtheunminedportionoftheupperseammayposestrainburstinghazards.Suchasituationdemandstheapplicationofdestressblastingpriortotheminingofthelowerseam[e.g.2,35,47].Figure7.Simplifiedmodelofdestressblastingapplication[36]ApplicationofdestressblastingundersuchconditionshasbeeninpracticeinCzech[36,45,47,48]andPoland[22,23,28]andistermed"preconditioning"asdestressblastingispracticedmuchearlierthanmining.ThesimplifiedconceptualmodelofdestressblastingapplicationaspreconditioningisshowninFigure7[36].Thus,twomaintypesofrockburstsaredistinguishedaccordingtotheiroriginandmechanism.Theyare:rockburstinitiatedinthecoalseamoritsvicinityandrockburstinitiatedoutsidethecoalseam,mostlyinhighlycompetentroof.Toprotectagainstrockburstsinthecoalseam,activemeasuresareappliedinthevicinityofmineworkings,whereastoeliminateunfavourablestressconditionsoutsidethecoalseamitisnecessarytoapplypassiveprotectionofpotentiallyendangeredmineworkings.Wecangenerallydescribethepreconditioningsystemasasystemoflongholeswhicharedrilledinadjacentrocksofcoalseams.Preconditioningisdesignedaccordingtothefollowingspecifications[36].?Boreholesdrilledusuallyfromthegates.?Boreholesdiameter75–105mm.?Inclinationofboreholesupto+30°.?Spacingofboreholes5–12m.?Pneumaticchargingofexplosivesintoboreholes(incartridges).?Useofrockexplosives.?Simultaneousblastingwithoutdelay.?Blastingofexplosivesatadistanceof30mto100mfromthelongwallfaceintheregionofexpectedstressconcentration.Maximumwaitingtimeafterdestressblastinginadjacentrocksdependsonthedilutionofblast-inducedfumesinthemineandregisteredseismicactivity.Waitingtimeisfrom45to60minutes.Destressblastinginadjacentrocksofhardcoalseamsisnotthemostcommonlyusedsystemofcoalrockburstprevention.DestressblastingasarockburstcontroltechniquecomesfromdeepSouthAfricanoremines.Wecangenerallydescribemaingoalsofdestressblastingas:?Softeningofthecompetentrocklayersandreducingtheireffectivemodulusofelasticity,?Stressrelease.UsingsystemintheCzechCollieries,whichexampleispresentedbelow,isauniqueEuropeansystemindifficultstressconditionsinrockmasswecandescribeitwidely.Thesystemofdestressblastinghasbeenusedfor30yearsandwithincreasingminingdepths,ithasgainedimportance[36].AnexampleofdestressblastingaspreconditioningispresentedinFig.8whichhasbeenappliedinCSAcollieryoftheCzechRepublic[17].Theproperdestressblastingdrillholesweredrilledupwardsfrom(+20o)to(+28o)fromcoalseamlevelNo530locatedwithindepthrangeof860mupto890mbelowEarthsurface.Thelengthsofholesvariedfrom30mto80m.Inviewofdesignedparametersandthedestressblastingtasktheboreholediametersof75mmand93mmwereselected.Perpendiculardistancebetweenthedrillholesof(1)and(2)was10mupto15mandbetweenthedrillholesof(3)was10matmaximum.Thedrillholebottomsweresituatedatadistanceofabout30mabovetoppartofcoalseamNo530.Fordrillholestheplasticexplosiveinchargesaswellaspneumaticsandstemmingwereapplied.Thelengthsofparticularchargesvariedfrom15mupto50mandthelengthsofsandstemmingfrom15mupto30m.Allchargesineachstageweresimultaneouslyfiredwithoutusingdelays.Weightofparticularchargesvariedaccordingtoapplieddiameterandlengthofdrillholefrom60kgupto400kgperhole.Inparticularstagesthegroupsof2–6drillholeswithtotalchargesof552kgupto1440kgwereblasted.27stagesofdestressblastingwererealizedduringtheextractionoflongwallNo14735,i.e.fromNovember2003untilJune2004.Atotalamountof27,960kgexplosiveswasblastedin120drillholes.Inallstagesagreaterseismicenergywasreleasedthanitwouldcorrespondtoworkingperformedbyexplosiveatspecificphysical-mechanicalconditions.SimilarsystemofdestressblastingisusedinPolishcollieries[23,28,37],lengthofboreholesisintherangeof12to60mbutweightofexplosivechargeissmaller(accordingtolengthofboreholes40–150kg).Spacingofboreholesislarger(20–40m).Sometimesthegoalistocreatefracturesaroundtheblastedholes.DirectionalfracturingtechniquehasbeendevelopedinPoland[49,50].Thistechniqueisbasedontheconceptofhydraulicfracturingbuthasadjustmentfordestressblasting.Theobjectiveistocreatefracturesperpendiculartoboreholeaxis.MaximumwaitingtimeafterdestressblastingismuchlongerthaninCzechcollieries(uptoseveralhours).Fig.8.SchemeandsituationofdestressblastinginareaoflongwallNo14735inseamNo530atCSAColliery[17]4.EvaluationofeffectivenessProperlydesignedandrealizeddestressrockblasting(locationandspacingofboreholes,diameterofboreholes,lengthofcharge,numberoffiredboreholes,totalexplosivescharge,etc.)shallreducethestrengthanddeformationpropertiesofrockmassandthusshifthighstressconcentrationfartherinteriorintotherockmass.Evaluationofeffectivenessofdestressblastingisthusattemptedusingdifferentapproaches.Wewilltakeherealibertyofdescribingtheeffectivenessevaluationapproachasbeingdonefornon-coalminestooinordertodevelopabetterapproachforcoalmineapplications.Effectivenessfordestressblastingforthecaseofcutterfailureismeasuredfromvisualobservation.Incaseoffloorheave,theeffectivenessofdestressblastingismeasuredintermsofdecreaseinrockmassdeformationanddeformationrate.Kexinetal[25]andXiaetal.[26]describedecreaseinrockmassdeformationaftersuccessfulapplicationofdestressblastinginaChinesecoalmine.Figure9illustrateslongtermmeasurementofsidewallsandfloormovementcharacteristicsbeforeandafterdestressblastingintheChinesecoalmine.Variousattemptshavebeenmadetoascertaineffectivenessofdestressblastingasappliedtoalleviaterockburstproblemsandsomeofthemaredescribedbelow.Fig.9.Convergencemonitoringinacoalmineroadway[25]Changeinstressparametersbeforeandafterdestressblasting[35,38,39]andmodulusparameters[40,41]hasbeenmonitoredbothincoalandnon-coalminesasitisbelievedthattheobjectiveofdistressblastingistoreducethecriticalstressparametersandinducereductioninmodulusvaluessothattherockmassshallnotcarrycriticalstresslevel.Fig.10representsmeasurementofstresschangeduetodistressblastingintabulargolddepositsinSouthAfrica.Suchmeasurementsaretroubledwithinexplicableresults.Attemptshavealsobeenmadetocharacterizetheeffectivenessofdestressblastingbythecalculationofseismicenergyreleasedconcurrenttodestressblastingapplicationasitisconceivedthatreleaseofhigherenergythencontainedbytheexplosivesisamanifestationofreleaseofstrainenergystoredintherockmass[36,42].Theproblem,however,withtheapplicationofthismethodologyisthatmajorityofrockburstsareconcurrenttotheblasting,irrespectiveofroutineblastingordestressblasting.Stressreleaseisevaluatedusingcalculatedseismiceffect–SE[51,42].ItisbasedonstatisticalinterpretationofthedataofSEdistribution[42].Thedegreeofstressreleaseduetodestressblastingcanbedivided,onthebasisofSEcalculation,intoinsignificant,good,verygood,extremelygoodandexcellent(seeTable3).TheSEofdestressrockblastingistheratioofseismicenergyreleasedintherockmasswhenblastingtotheconsideredenergyoftheparticulardetonatedcharge:(1)whereESeis=seismicenergyinJ;Q=weightofexplosivechargeinkg;andK=2.1(forthenaturalconditionsofrockmassintheCzechpartoftheUSCB).ThereleasedseismicenergyintherockmassESeisisevaluatedfromseismicmonitoring.

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯(lián)系上傳者。文件的所有權(quán)益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網(wǎng)頁內(nèi)容里面會有圖紙預(yù)覽,若沒有圖紙預(yù)覽就沒有圖紙。
  • 4. 未經(jīng)權(quán)益所有人同意不得將文件中的內(nèi)容挪作商業(yè)或盈利用途。
  • 5. 人人文庫網(wǎng)僅提供信息存儲空間,僅對用戶上傳內(nèi)容的表現(xiàn)方式做保護(hù)處理,對用戶上傳分享的文檔內(nèi)容本身不做任何修改或編輯,并不能對任何下載內(nèi)容負(fù)責(zé)。
  • 6. 下載文件中如有侵權(quán)或不適當(dāng)內(nèi)容,請與我們聯(lián)系,我們立即糾正。
  • 7. 本站不保證下載資源的準(zhǔn)確性、安全性和完整性, 同時也不承擔(dān)用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論