江蘇省南京市南京師范大附屬中學2024屆中考數學最后沖刺模擬試卷含解析_第1頁
江蘇省南京市南京師范大附屬中學2024屆中考數學最后沖刺模擬試卷含解析_第2頁
江蘇省南京市南京師范大附屬中學2024屆中考數學最后沖刺模擬試卷含解析_第3頁
江蘇省南京市南京師范大附屬中學2024屆中考數學最后沖刺模擬試卷含解析_第4頁
江蘇省南京市南京師范大附屬中學2024屆中考數學最后沖刺模擬試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省南京市南京師范大附屬中學2024屆中考數學最后沖刺模擬試卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.山西有著悠久的歷史,遠在100多萬年前就有古人類生息在這塊土地上.春秋時期,山西大部分為晉國領地,故山西簡稱為“晉”,戰國初韓、趙、魏三分晉,山西又有“三晉”之稱,下面四個以“晉”字為原型的Logo圖案中,是軸對稱圖形的共有()A. B. C. D.2.把拋物線y=﹣2x2向上平移1個單位,再向右平移1個單位,得到的拋物線是()A.y=﹣2(x+1)2+1 B.y=﹣2(x﹣1)2+1C.y=﹣2(x﹣1)2﹣1 D.y=﹣2(x+1)2﹣13.如圖已知⊙O的內接五邊形ABCDE,連接BE、CE,若AB=BC=CE,∠EDC=130°,則∠ABE的度數為()A.25° B.30° C.35° D.40°4.如圖,將△OAB繞O點逆時針旋轉60°得到△OCD,若OA=4,∠AOB=35°,則下列結論錯誤的是()A.∠BDO=60° B.∠BOC=25° C.OC=4 D.BD=45.據報道,南寧創客城已于2015年10月開城,占地面積約為14400平方米,目前已引進創業團隊30多家,將14400用科學記數法表示為()A.14.4×103 B.144×102 C.1.44×104 D.1.44×10﹣46.關于x的一元二次方程x2﹣2x+k+2=0有實數根,則k的取值范圍在數軸上表示正確的是()A. B.C. D.7.如圖,在平行線l1、l2之間放置一塊直角三角板,三角板的銳角頂點A,B分別在直線l1、l2上,若∠l=65°,則∠2的度數是()A.25° B.35° C.45° D.65°8.下列各類數中,與數軸上的點存在一一對應關系的是()A.有理數B.實數C.分數D.整數9.如圖1是一座立交橋的示意圖(道路寬度忽略不計),A為人口,F,G為出口,其中直行道為AB,CG,EF,且AB=CG=EF;彎道為以點O為圓心的一段弧,且,,所對的圓心角均為90°.甲、乙兩車由A口同時駛入立交橋,均以10m/s的速度行駛,從不同出口駛出,其間兩車到點O的距離y(m)與時間x(s)的對應關系如圖2所示.結合題目信息,下列說法錯誤的是()A.甲車在立交橋上共行駛8s B.從F口出比從G口出多行駛40m C.甲車從F口出,乙車從G口出 D.立交橋總長為150m10.我國古代數學著作《孫子算經》中有一道題:“今有木,不知長短,引繩度之,余繩四尺五,屈繩量之,不足一尺,問木長幾何。”大致意思是:“用一根繩子去量一根木條,繩長剩余4.5尺,將繩子對折再量木條,木條剩余一尺,問木條長多少尺”,設繩子長尺,木條長尺,根據題意所列方程組正確的是()A. B. C. D.11.下列計算正確的是()A.a2?a3=a5B.2a+a2=3a3C.(﹣a3)3=a6D.a2÷a=212.已知是二元一次方程組的解,則m+3n的值是()A.4 B.6 C.7 D.8二、填空題:(本大題共6個小題,每小題4分,共24分.)13.如果m,n互為相反數,那么|m+n﹣2016|=___________.14.如圖,矩形ABCD的對角線BD經過的坐標原點,矩形的邊分別平行于坐標軸,點C在反比例函數y=的圖象上,若點A的坐標為(﹣2,﹣3),則k的值為_____.15.比較大小:4(填入“>”或“<”號)16.已知雙曲線經過點(-1,2),那么k的值等于_______.17.如圖,以點為圓心的兩個同心圓中,大圓的弦是小圓的切線,點是切點,則劣弧AB的長為.(結果保留)18.如果當a≠0,b≠0,且a≠b時,將直線y=ax+b和直線y=bx+a稱為一對“對偶直線”,把它們的公共點稱為該對“對偶直線”的“對偶點”,那么請寫出“對偶點”為(1,4)的一對“對偶直線”:______.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)“賞中華詩詞,尋文化基因,品生活之美”,某校舉辦了首屆“中國詩詞大會”,經選拔后有50名學生參加決賽,這50名學生同時默寫50首古詩詞,若每正確默寫出一首古詩詞得2分,根據測試成績繪制出部分頻數分布表和部分頻數分布直方圖如圖表:請結合圖表完成下列各題:(1)①表中a的值為,中位數在第組;②頻數分布直方圖補充完整;(2)若測試成績不低于80分為優秀,則本次測試的優秀率是多少?(3)第5組10名同學中,有4名男同學,現將這10名同學平均分成兩組進行對抗練習,且4名男同學每組分兩人,求小明與小強兩名男同學能分在同一組的概率.組別成績x分頻數(人數)第1組50≤x<606第2組60≤x<708第3組70≤x<8014第4組80≤x<90a第5組90≤x<1001020.(6分)如圖,圓內接四邊形ABCD的兩組對邊延長線分別交于E、F,∠AEB、∠AFD的平分線交于P點.求證:PE⊥PF.21.(6分)如圖,在四邊形ABCD中,AB=AD,CB=CD,E是CD上一點,BE交AC于F,連接DF.(1)證明:∠BAC=∠DAC.(2)若∠BEC=∠ABE,試證明四邊形ABCD是菱形.22.(8分)為了傳承祖國的優秀傳統文化,某校組織了一次“詩詞大會”,小明和小麗同時參加,其中,有一道必答題是:從如圖所示的九宮格中選取七個字組成一句唐詩,其答案為“山重水復疑無路”.(1)小明回答該問題時,僅對第二個字是選“重”還是選“窮”難以抉擇,隨機選擇其中一個,則小明回答正確的概率是;(2)小麗回答該問題時,對第二個字是選“重”還是選“窮”、第四個字是選“富”還是選“復”都難以抉擇,若分別隨機選擇,請用列表或畫樹狀圖的方法求小麗回答正確的概率.九宮格23.(8分)如圖,四邊形ABCD的頂點在⊙O上,BD是⊙O的直徑,延長CD、BA交于點E,連接AC、BD交于點F,作AH⊥CE,垂足為點H,已知∠ADE=∠ACB.(1)求證:AH是⊙O的切線;(2)若OB=4,AC=6,求sin∠ACB的值;(3)若,求證:CD=DH.24.(10分)如圖,在△ABC中,∠ACB=90°,點D是AB上一點,以BD為直徑的⊙O和AB相切于點P.(1)求證:BP平分∠ABC;(2)若PC=1,AP=3,求BC的長.25.(10分)為了樹立文明鄉風,推進社會主義新農村建設,某村決定組建村民文體團隊,現圍繞“你最喜歡的文體活動項目(每人僅限一項)”,在全村范圍內隨機抽取部分村民進行問卷調查,并將調查結果繪制成如下兩幅不完整的統計圖.請你根據統計圖解答下列問題:(1)這次參與調查的村民人數為人;(2)請將條形統計圖補充完整;(3)求扇形統計圖中“劃龍舟”所在扇形的圓心角的度數;(4)若在“廣場舞、腰鼓、花鼓戲、劃龍舟”這四個項目中任選兩項組隊參加端午節慶典活動,請用列表或畫樹狀圖的方法,求恰好選中“花鼓戲、劃龍舟”這兩個項目的概率.26.(12分)如圖,在電線桿上的C處引拉線CE、CF固定電線桿,拉線CE和地面成60°角,在離電線桿6米的B處安置測角儀,在A處測得電線桿上C處的仰角為30°,已知測角儀高AB為1.5米,求拉線CE的長(結果保留根號).27.(12分)已知,拋物線y=ax2+c過點(-2,2)和點(4,5),點F(0,2)是y軸上的定點,點B是拋物線上除頂點外的任意一點,直線l:y=kx+b經過點B、F且交x軸于點A.(1)求拋物線的解析式;(2)①如圖1,過點B作BC⊥x軸于點C,連接FC,求證:FC平分∠BFO;②當k=時,點F是線段AB的中點;(3)如圖2,M(3,6)是拋物線內部一點,在拋物線上是否存在點B,使△MBF的周長最小?若存在,求出這個最小值及直線l的解析式;若不存在,請說明理由.

參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、D【解析】

根據軸對稱圖形的概念求解.【詳解】A、不是軸對稱圖形,故此選項錯誤;B、不是軸對稱圖形,故此選項錯誤;C、不是軸對稱圖形,故此選項錯誤;D、是軸對稱圖形,故此選項正確.

故選D.【點睛】此題主要考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.2、B【解析】

∵函數y=-2x2的頂點為(0,0),∴向上平移1個單位,再向右平移1個單位的頂點為(1,1),∴將函數y=-2x2的圖象向上平移1個單位,再向右平移1個單位,得到拋物線的解析式為y=-2(x-1)2+1,故選B.【點睛】二次函數的平移不改變二次項的系數;關鍵是根據上下平移改變頂點的縱坐標,左右平移改變頂點的橫坐標得到新拋物線的頂點.3、B【解析】

如圖,連接OA,OB,OC,OE.想辦法求出∠AOE即可解決問題.【詳解】如圖,連接OA,OB,OC,OE.∵∠EBC+∠EDC=180°,∠EDC=130°,∴∠EBC=50°,∴∠EOC=2∠EBC=100°,∵AB=BC=CE,∴弧AB=弧BC=弧CE,∴∠AOB=∠BOC=∠EOC=100°,∴∠AOE=360°﹣3×100°=60°,∴∠ABE=∠AOE=30°.故選:B.【點睛】本題考查圓周角定理,圓心角,弧,弦之間的關系等知識,解題的關鍵是熟練掌握基本知識,屬于中考常考題型.4、D【解析】

由△OAB繞O點逆時針旋轉60°得到△OCD知∠AOC=∠BOD=60°,AO=CO=4、BO=DO,據此可判斷C;由△AOC、△BOD是等邊三角形可判斷A選項;由∠AOB=35°,∠AOC=60°可判斷B選項,據此可得答案.【詳解】解:∵△OAB繞O點逆時針旋轉60°得到△OCD,

∴∠AOC=∠BOD=60°,AO=CO=4、BO=DO,故C選項正確;

則△AOC、△BOD是等邊三角形,∴∠BDO=60°,故A選項正確;

∵∠AOB=35°,∠AOC=60°,∴∠BOC=∠AOC-∠AOB=60°-35°=25°,故B選項正確.

故選D.【點睛】本題考查旋轉的性質,解題的關鍵是掌握旋轉的性質:①對應點到旋轉中心的距離相等.②對應點與旋轉中心所連線段的夾角等于旋轉角.③旋轉前、后的圖形全等及等邊三角形的判定和性質.5、C【解析】

科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數.確定n的值時,要看把原數變成a時,小數點移動了多少位,n的絕對值與小數點移動的位數相同.當原數絕對值大于10時,n是正數;當原數的絕對值小于1時,n是負數.【詳解】14400=1.44×1.故選C.【點睛】此題考查科學記數法的表示方法.科學記數法的表示形式為a×10n的形式,其中1≤|a|<10,n為整數,表示時關鍵要正確確定a的值以及n的值.6、C【解析】

由一元二次方程有實數根可知△≥0,即可得出關于k的一元一次不等式,解之即可得出k的取值范圍.【詳解】∵關于x的一元二次方程x2?2x+k+2=0有實數根,∴△=(?2)2?4(k+2)?0,解得:k??1,在數軸上表示為:故選C.【點睛】本題考查了一元二次方程根的判別式.根據一元二次方程根的情況利用根的判別式列出不等式是解題的關鍵.7、A【解析】

如圖,過點C作CD∥a,再由平行線的性質即可得出結論.【詳解】如圖,過點C作CD∥a,則∠1=∠ACD,∵a∥b,∴CD∥b,∴∠2=∠DCB,∵∠ACD+∠DCB=90°,∴∠1+∠2=90°,又∵∠1=65°,∴∠2=25°,故選A.【點睛】本題考查了平行線的性質與判定,根據題意作出輔助線,構造出平行線是解答此題的關鍵.8、B【解析】

根據實數與數軸上的點存在一一對應關系解答.【詳解】實數與數軸上的點存在一一對應關系,故選:B.【點睛】本題考查了實數與數軸上點的關系,每一個實數都可以用數軸上唯一的點來表示,反過來,數軸上的每個點都表示一個唯一的實數,也就是說實數與數軸上的點一一對應.9、C【解析】分析:結合2個圖象分析即可.詳解:A.根據圖2甲的圖象可知甲車在立交橋上共行駛時間為:,故正確.B.3段弧的長度都是:從F口出比從G口出多行駛40m,正確.C.分析圖2可知甲車從G口出,乙車從F口出,故錯誤.D.立交橋總長為:故正確.故選C.點睛:考查圖象問題,觀察圖象,讀懂圖象是解題的關鍵.10、A【解析】

本題的等量關系是:繩長-木長=4.5;木長-×繩長=1,據此列方程組即可求解.【詳解】設繩子長x尺,木條長y尺,依題意有.故選A.【點睛】本題考查由實際問題抽象出二元一次方程組,解題的關鍵是明確題意,列出相應的二元一次方程組.11、A【解析】

直接利用合并同類項法則以及積的乘方運算法則、整式的除法運算法則分別計算得出答案.【詳解】A、a2?a3=a5,故此選項正確;B、2a+a2,無法計算,故此選項錯誤;C、(-a3)3=-a9,故此選項錯誤;D、a2÷a=a,故此選項錯誤;故選A.【點睛】此題主要考查了合并同類項以及積的乘方運算、整式的除法運算,正確掌握相關運算法則是解題關鍵.12、D【解析】分析:根據二元一次方程組的解,直接代入構成含有m、n的新方程組,解方程組求出m、n的值,代入即可求解.詳解:根據題意,將代入,得:,①+②,得:m+3n=8,故選D.點睛:此題主要考查了二元一次方程組的解,利用代入法求出未知參數是解題關鍵,比較簡單,是常考題型.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、1.【解析】試題分析:先用相反數的意義確定出m+n=0,從而求出|m+n﹣1|,∵m,n互為相反數,∴m+n=0,∴|m+n﹣1|=|﹣1|=1;故答案為1.考點:1.絕對值的意義;2.相反數的性質.14、1或﹣1【解析】

根據矩形的對角線將矩形分成面積相等的兩個直角三角形,找到圖中的所有矩形及相等的三角形,即可推出S四邊形CEOF=S四邊形HAGO,根據反比例函數比例系數的幾何意義即可求出k2+4k+1=6,再解出k的值即可.【詳解】如圖:∵四邊形ABCD、HBEO、OECF、GOFD為矩形,又∵BO為四邊形HBEO的對角線,OD為四邊形OGDF的對角線,∴S△BEO=S△BHO,S△OFD=S△OGD,S△CBD=S△ADB,∴S△CBD﹣S△BEO﹣S△OFD=S△ADB﹣S△BHO﹣S△OGD,∴S四邊形CEOF=S四邊形HAGO=2×3=6,∴xy=k2+4k+1=6,解得k=1或k=﹣1.故答案為1或﹣1.【點睛】本題考查了反比例函數k的幾何意義、矩形的性質、一元二次方程的解法,解題的關鍵是判斷出S四邊形CEOF=S四邊形HAGO.15、>【解析】

試題解析:∵<∴4<.考點:實數的大小比較.【詳解】請在此輸入詳解!16、-1【解析】

分析:根據點在曲線上點的坐標滿足方程的關系,將點(-1,2)代入,得:,解得:k=-1.17、8π.【解析】試題分析:因為AB為切線,P為切點,劣弧AB所對圓心角考點:勾股定理;垂徑定理;弧長公式.18、【解析】

把(1,4)代入兩函數表達式可得:a+b=4,再根據“對偶直線”的定義,即可確定a、b的值.【詳解】把(1,4)代入得:a+b=4又因為,,且,所以當a=1是b=3所以“對偶點”為(1,4)的一對“對偶直線”可以是:故答案為【點睛】此題為新定義題型,關鍵是理解新定義,并按照新定義的要求解答.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)①12,3.②詳見解析.(2).【解析】分析:(1)①根據題意和表中的數據可以求得a的值;②由表格中的數據可以將頻數分布表補充完整;(2)根據表格中的數據和測試成績不低于80分為優秀,可以求得優秀率;(3)根據題意可以求得所有的可能性,從而可以得到小明與小強兩名男同學能分在同一組的概率.詳解:(1)①a=50﹣(6+8+14+10)=12,中位數為第25、26個數的平均數,而第25、26個數均落在第3組內,所以中位數落在第3組,故答案為12,3;②如圖,(2)×100%=44%,答:本次測試的優秀率是44%;(3)設小明和小強分別為A、B,另外兩名學生為:C、D,則所有的可能性為:(AB﹣CD)、(AC﹣BD)、(AD﹣BC).所以小明和小強分在一起的概率為:.點睛:本題考查列舉法求概率、頻數分布表、頻數分布直方圖、中位數,解題的關鍵是明確題意,找出所求問題需要的條件,可以將所有的可能性都寫出來,求出相應的概率.20、證明見解析.【解析】

由圓內接四邊形ABCD的兩組對邊延長線分別交于E、F,∠AEB、∠AFD的平分線交于P點,繼而可得EM=EN,即可證得:PE⊥PF.【詳解】∵四邊形內接于圓,∴,∵平分,∴,∵,,∴,∴,∵平分,∴.【點睛】此題考查了圓的內接多邊形的性質以及圓周角定理.此題難度不大,注意掌握數形結合思想的應用.21、證明見解析【解析】試題分析:由AB=AD,CB=CD結合AC=AC可得△ABC≌△ADC,由此可得∠BAC=∠DAC,再證△ABF≌△ADF即可得到∠AFB=∠AFD,結合∠AFB=∠CFE即可得到∠AFD=∠CFE;(2)由AB∥CD可得∠DCA=∠BAC結合∠BAC=∠DAC可得∠DCA=∠DAC,由此可得AD=CD結合AB=AD,CB=CD可得AB=BC=CD=AD,即可得到四邊形ABCD是菱形.試題解析:(1)在△ABC和△ADC中,

∵AB=AD,CB=CD,AC=AC,

∴△ABC≌△ADC,

∴∠BAC=∠DAC,

在△ABF和△ADF中,

∵AB=AD,∠BAC=∠DAC,AF=AF,

∴△ABF≌△ADF,

∴∠AFB=∠AFD.

(2)證明:∵AB∥CD,

∴∠BAC=∠ACD,

∵∠BAC=∠DAC,

∴∠ACD=∠CAD,

∴AD=CD,

∵AB=AD,CB=CD,

∴AB=CB=CD=AD,

∴四邊形ABCD是菱形.22、(1);(2)【解析】試題分析:(1)利用概率公式直接計算即可;(2)畫出樹狀圖得到所有可能的結果,再找到回答正確的數目即可求出小麗回答正確的概率.試題解析:(1)∵對第二個字是選“重”還是選“窮”難以抉擇,∴若隨機選擇其中一個正確的概率=,故答案為;(2)畫樹形圖得:由樹狀圖可知共有4種可能結果,其中正確的有1種,所以小麗回答正確的概率=.考點:列表法與樹狀圖法;概率公式.23、(1)證明見解析;(2);(3)證明見解析.【解析】

(1)連接OA,證明△DAB≌△DAE,得到AB=AE,得到OA是△BDE的中位線,根據三角形中位線定理、切線的判定定理證明;(2)利用正弦的定義計算;(3)證明△CDF∽△AOF,根據相似三角形的性質得到CD=CE,根據等腰三角形的性質證明.【詳解】(1)證明:連接OA,由圓周角定理得,∠ACB=∠ADB,∵∠ADE=∠ACB,∴∠ADE=∠ADB,∵BD是直徑,∴∠DAB=∠DAE=90°,在△DAB和△DAE中,,∴△DAB≌△DAE,∴AB=AE,又∵OB=OD,∴OA∥DE,又∵AH⊥DE,∴OA⊥AH,∴AH是⊙O的切線;(2)解:由(1)知,∠E=∠DBE,∠DBE=∠ACD,∴∠E=∠ACD,∴AE=AC=AB=1.在Rt△ABD中,AB=1,BD=8,∠ADE=∠ACB,∴sin∠ADB==,即sin∠ACB=;(3)證明:由(2)知,OA是△BDE的中位線,∴OA∥DE,OA=DE.∴△CDF∽△AOF,∴=,∴CD=OA=DE,即CD=CE,∵AC=AE,AH⊥CE,∴CH=HE=CE,∴CD=CH,∴CD=DH.【點睛】本題考查的是圓的知識的綜合應用,掌握圓周角定理、相似三角形的判定定理和性質定理、三角形中位線定理是解題的關鍵.24、(1)證明見解析;(2).【解析】試題分析:(1)連接OP,首先證明OP∥BC,推出∠OPB=∠PBC,由OP=OB,推出∠OPB=∠OBP,由此推出∠PBC=∠OBP;

(2)作PH⊥AB于H.首先證明PC=PH=1,在Rt△APH中,求出AH,由△APH∽△ABC,求出AB、BH,由Rt△PBC≌Rt△PBH,推出BC=BH即可解決問題.試題解析:(1)連接OP,∵AC是⊙O的切線,∴OP⊥AC,∴∠APO=∠ACB=90°,∴OP∥BC,∴∠OPB=∠PBC,∵OP=OB,∴∠OPB=∠OBP,∴∠PBC=∠OBP,∴BP平分∠ABC;(2)作PH⊥AB于H.則∠AHP=∠BHP=∠ACB=90°,又∵∠PBC=∠OBP,PB=PB,∴△PBC≌△PBH,∴PC=PH=1,BC=BH,在Rt△APH中,AH=,在Rt△ACB中,AC2+BC2=AB2∴(AP+PC)2+BC2=(AH+HB)2,即42+BC2=(+BC)2,解得.25、(1)120;(2)42人;(3)90°;(4)16【解析】

(1)直接利用腰鼓所占比例以及條形圖中人數即可得出這次參與調查的村民人數;(2)利用條形統計圖以及樣本數量得出喜歡廣場舞的人數;(3)利用“劃龍舟”人數在樣本中所占比例得出“劃龍舟”所在扇形的圓心角的度數;(4)利用樹狀圖法列舉出所有的可能進而得出概率.【詳解】(1)這次參與調查的村民人數為:24÷20%=120(人);故答案為:120;(2)喜歡廣場舞的人數為:120﹣24﹣15﹣30﹣9=42(人),如圖所示:;(3)扇形統計圖中“劃龍舟”所在扇形的圓心角的度數為:30120(4)如圖所示:,一共有12種可能,恰好選中“花鼓戲、劃龍舟”這兩個項目的有2種可能,故恰好選中“花鼓戲、劃龍舟”這兩個項目的概率為:16【點睛】此題主要考查了扇形統計圖以及條形統計圖的應用和樹狀圖法求概率,正確列舉出所有可能是解題關鍵.26、CE的長為(4+)米【解析】

由題意可先過點A作AH⊥CD于H.在Rt△ACH中,可求出CH,進而CD=CH+HD=CH+AB,再在Rt△CED中,求出CE的長.【詳解】過點A作AH⊥CD,垂足為H,由題意可知四邊形ABDH為矩形,∠CAH=30°,∴AB=DH=1.5,BD=AH=6,在Rt△ACH中,tan∠CAH=,∴CH=AH?tan∠CAH,∴CH=AH?tan∠CAH=6tan30°=6×=2(米),∵DH=1.5,∴CD=2+1.5,在Rt△CDE中,∵∠CED=60°,sin∠CED=,∴CE==(4+)(米

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論