江蘇省沭陽縣達標名校2024屆中考數學押題試卷含解析_第1頁
江蘇省沭陽縣達標名校2024屆中考數學押題試卷含解析_第2頁
江蘇省沭陽縣達標名校2024屆中考數學押題試卷含解析_第3頁
江蘇省沭陽縣達標名校2024屆中考數學押題試卷含解析_第4頁
江蘇省沭陽縣達標名校2024屆中考數學押題試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

江蘇省沭陽縣達標名校2024屆中考數學押題試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.已知二次函數y=x2+bx+c的圖象與x軸相交于A、B兩點,其頂點為P,若S△APB=1,則b與c滿足的關系是()A.b2-4c+1=0 B.b2-4c-1=0 C.b2-4c+4=0 D.b2-4c-4=02.如圖,在△ABC中,∠B=46°,∠C=54°,AD平分∠BAC,交BC于D,DE∥AB,交AC于E,則∠CDE的大小是()A.40° B.43° C.46° D.54°3.如圖,在△ABC中,∠ACB=90°,∠ABC=60°,BD平分∠ABC,P點是BD的中點,若AD=6,則CP的長為()A.3.5 B.3 C.4 D.4.54.下列美麗的圖案中,不是軸對稱圖形的是()A. B. C. D.5.如圖,半徑為3的⊙A經過原點O和點C(0,2),B是y軸左側⊙A優弧上一點,則tan∠OBC為()A. B.2 C. D.6.下列計算結果為a6的是()A.a2?a3B.a12÷a2C.(a2)3D.(﹣a2)37.估計-1的值在()A.0到1之間 B.1到2之間 C.2到3之間 D.3至4之間8.若不等式組無解,那么m的取值范圍是()A.m≤2 B.m≥2 C.m<2 D.m>29.如圖,BD是∠ABC的角平分線,DC∥AB,下列說法正確的是()A.BC=CD B.AD∥BCC.AD=BC D.點A與點C關于BD對稱10.某市6月份日平均氣溫統計如圖所示,那么在日平均氣溫這組數據中,中位數是()A.8 B.10 C.21 D.22二、填空題(共7小題,每小題3分,滿分21分)11.對于實數a,b,定義運算“*”:a*b=,例如:因為4>2,所以4*2=42﹣4×2=8,則(﹣3)*(﹣2)=___________.12.將數字37000000用科學記數法表示為_____.13.桌上擺著一個由若干個相同正方體組成的幾何體,其主視圖和左視圖如圖所示,這個幾何體最多可以由___________個這樣的正方體組成.14.如圖,已知雙曲線經過直角三角形OAB斜邊OA的中點D,且與直角邊AB相交于點C.若點A的坐標為(-6,4),則△AOC的面積為.15.如圖,已知點A(a,b),0是原點,OA=OA1,OA⊥OA1,則點A1的坐標是.16.菱形ABCD中,,其周長為32,則菱形面積為____________.17.已知a+b=1,那么a2-b2+2b=________.三、解答題(共7小題,滿分69分)18.(10分)如圖,在平行四邊形ABCD中,BD是對角線,∠ADB=90°,E、F分別為邊AB、CD的中點.(1)求證:四邊形DEBF是菱形;(2)若BE=4,∠DEB=120°,點M為BF的中點,當點P在BD邊上運動時,則PF+PM的最小值為,并在圖上標出此時點P的位置.19.(5分)一位運動員推鉛球,鉛球運行時離地面的高度(米)是關于運行時間(秒)的二次函數.已知鉛球剛出手時離地面的高度為米;鉛球出手后,經過4秒到達離地面3米的高度,經過10秒落到地面.如圖建立平面直角坐標系.(Ⅰ)為了求這個二次函數的解析式,需要該二次函數圖象上三個點的坐標.根據題意可知,該二次函數圖象上三個點的坐標分別是____________________________;(Ⅱ)求這個二次函數的解析式和自變量的取值范圍.20.(8分)如圖,在△ABC中,AB=AC,D為BC的中點,DE⊥AB,DF⊥AC,垂足分別為E、F,求證:DE=DF.21.(10分)(1)計算:()﹣1+﹣(π﹣2018)0﹣4cos30°(2)解不等式組:,并把它的解集在數軸上表示出來.22.(10分)某中學開展“漢字聽寫大賽”活動,為了解學生的參與情況,在該校隨機抽取了四個班級學生進行調查,將收集的數據整理并繪制成圖1和圖2兩幅尚不完整的統計圖,請根據圖中的信息,解答下列問題:(1)這四個班參與大賽的學生共__________人;(2)請你補全兩幅統計圖;(3)求圖1中甲班所對應的扇形圓心角的度數;(4)若四個班級的學生總數是160人,全校共2000人,請你估計全校的學生中參與這次活動的大約有多少人.23.(12分)如圖,在△ABC中,∠ACB=90°,∠ABC=10°,△CDE是等邊三角形,點D在邊AB上.(1)如圖1,當點E在邊BC上時,求證DE=EB;(2)如圖2,當點E在△ABC內部時,猜想ED和EB數量關系,并加以證明;(1)如圖1,當點E在△ABC外部時,EH⊥AB于點H,過點E作GE∥AB,交線段AC的延長線于點G,AG=5CG,BH=1.求CG的長.24.(14分)如圖,網格的每個小正方形邊長均為1,每個小正方形的頂點稱為格點.已知和的頂點都在格點上,線段的中點為.(1)以點為旋轉中心,分別畫出把順時針旋轉,后的,;(2)利用(1)變換后所形成的圖案,解答下列問題:①直接寫出四邊形,四邊形的形狀;②直接寫出的值;③設的三邊,,,請證明勾股定理.

參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、D【解析】

拋物線的頂點坐標為P(?,),設A、B兩點的坐標為A(,0)、B(,0)則AB=,根據根與系數的關系把AB的長度用b、c表示,而S△APB=1,然后根據三角形的面積公式就可以建立關于b、c的等式.【詳解】解:∵,∴AB==,∵若S△APB=1∴S△APB=×AB×=1,∴?××,∴,設=s,則,故s=2,∴=2,∴.故選D.【點睛】本題主要考查了拋物線與x軸的交點情況與判別式的關系、拋物線頂點坐標公式、三角形的面積公式等知識,綜合性比較強.2、C【解析】

根據DE∥AB可求得∠CDE=∠B解答即可.【詳解】解:∵DE∥AB,∴∠CDE=∠B=46°,故選:C.【點睛】本題主要考查平行線的性質:兩直線平行,同位角相等.快速解題的關鍵是牢記平行線的性質.3、B【解析】

解:∵∠ACB=90°,∠ABC=60°,∴∠A=10°,∵BD平分∠ABC,∴∠ABD=∠ABC=10°,∴∠A=∠ABD,∴BD=AD=6,∵在Rt△BCD中,P點是BD的中點,∴CP=BD=1.故選B.4、A【解析】

根據軸對稱圖形的概念對各選項分析判斷即可得解.【詳解】解:A、不是軸對稱圖形,故本選項正確;B、是軸對稱圖形,故本選項錯誤;C、是軸對稱圖形,故本選項錯誤;D、是軸對稱圖形,故本選項錯誤.故選A.【點睛】本題考查了軸對稱圖形的概念,軸對稱圖形的關鍵是尋找對稱軸,圖形兩部分折疊后可重合.5、C【解析】試題分析:連結CD,可得CD為直徑,在Rt△OCD中,CD=6,OC=2,根據勾股定理求得OD=4所以tan∠CDO=,由圓周角定理得,∠OBC=∠CDO,則tan∠OBC=,故答案選C.考點:圓周角定理;銳角三角函數的定義.6、C【解析】

分別根據同底數冪相乘、同底數冪相除、冪的乘方的運算法則逐一計算可得.【詳解】A、a2?a3=a5,此選項不符合題意;

B、a12÷a2=a10,此選項不符合題意;

C、(a2)3=a6,此選項符合題意;

D、(-a2)3=-a6,此選項不符合題意;

故選C.【點睛】本題主要考查冪的運算,解題的關鍵是掌握同底數冪相乘、同底數冪相除、冪的乘方的運算法則.7、B【解析】試題分析:∵2<<3,∴1<-1<2,即-1在1到2之間,故選B.考點:估算無理數的大小.8、A【解析】

先求出每個不等式的解集,再根據不等式組解集的求法和不等式組無解的條件,即可得到m的取值范圍.【詳解】由①得,x<m,由②得,x>1,又因為不等式組無解,所以m≤1.故選A.【點睛】此題的實質是考查不等式組的求法,求不等式組的解集,要根據以下原則:同大取較大,同小較小,小大大小中間找,大大小小解不了.9、A【解析】

由BD是∠ABC的角平分線,根據角平分線定義得到一對角∠ABD與∠CBD相等,然后由DC∥AB,根據兩直線平行,得到一對內錯角∠ABD與∠CDB相等,利用等量代換得到∠DBC=∠CDB,再根據等角對等邊得到BC=CD,從而得到正確的選項.【詳解】∵BD是∠ABC的角平分線,∴∠ABD=∠CBD,又∵DC∥AB,∴∠ABD=∠CDB,∴∠CBD=∠CDB,∴BC=CD.故選A.【點睛】此題考查了等腰三角形的判定,以及平行線的性質.學生在做題時,若遇到兩直線平行,往往要想到用兩直線平行得同位角或內錯角相等,借助轉化的數學思想解決問題.這是一道較易的證明題,鍛煉了學生的邏輯思維能力.10、D【解析】分析:根據條形統計圖得到各數據的權,然后根據中位數的定義求解.詳解:一共30個數據,第15個數和第16個數都是22,所以中位數是22.故選D.點睛:考查中位數的定義,看懂條形統計圖是解題的關鍵.二、填空題(共7小題,每小題3分,滿分21分)11、-1.【解析】解:∵-3<-2,∴(-3)*(-2)=(-3)-(-2)=-1.故答案為-1.12、3.7×107【解析】

根據科學記數法即可得到答案.【詳解】數字37000000用科學記數法表示為3.7×107.【點睛】本題主要考查了科學記數法的基本概念,解本題的要點在于熟知科學記數法的相關知識.13、1【解析】

主視圖、左視圖是分別從物體正面、左面看,所得到的圖形.【詳解】易得第一層最多有9個正方體,第二層最多有4個正方體,所以此幾何體共有1個正方體.故答案為1.14、2【解析】解:∵OA的中點是D,點A的坐標為(﹣6,4),∴D(﹣1,2),∵雙曲線y=經過點D,∴k=﹣1×2=﹣6,∴△BOC的面積=|k|=1.又∵△AOB的面積=×6×4=12,∴△AOC的面積=△AOB的面積﹣△BOC的面積=12﹣1=2.15、(﹣b,a)【解析】解:如圖,從A、A1向x軸作垂線,設A1的坐標為(x,y),設∠AOX=α,∠A1OD=β,A1坐標(x,y)則α+β="90°sinα=cosβ"cosα="sinβ"sinα==cosβ=同理cosα==sinβ=所以x=﹣b,y=a,故A1坐標為(﹣b,a).【點評】重點理解三角函數的定義和求解方法,主要應用公式sinα=cosβ,cosα=sinβ.16、【解析】分析:根據菱形的性質易得AB=BC=CD=DA=8,AC⊥BD,OA=OC,OB=OD,再判定△ABD為等邊三角形,根據等邊三角形的性質可得AB=BD=8,從而得OB=4,在Rt△AOB中,根據勾股定理可得OA=4,繼而求得AC=2AO=,再由菱形的面積公式即可求得菱形ABCD的面積.詳解:∵菱形ABCD中,其周長為32,∴AB=BC=CD=DA=8,AC⊥BD,OA=OC,OB=OD,∵,∴△ABD為等邊三角形,∴AB=BD=8,∴OB=4,在Rt△AOB中,OB=4,AB=8,根據勾股定理可得OA=4,∴AC=2AO=,∴菱形ABCD的面積為:=.點睛:本題考查了菱形性質:1.菱形的四個邊都相等;2.菱形對角線相互垂直平分,并且每一組對角線平分一組對角;3.菱形面積公式=對角線乘積的一半.17、1【解析】

解:∵a+b=1,∴原式=故答案為1.【點睛】本題考查的是平方差公式的靈活運用.三、解答題(共7小題,滿分69分)18、(1)詳見解析;(2).【解析】

(1)根據直角三角形斜邊上的中線等于斜邊的一半,以及平行四邊形的對邊相等證明四邊形DEBF的四邊相等即可證得;(2)連接EM,EM與BD的交點就是P,FF+PM的最小值就是EM的長,證明△BEF是等邊三角形,利用三角函數求解.【詳解】(1)∵平行四邊形ABCD中,AD∥BC,∴∠DBC=∠ADB=90°.∵△ABD中,∠ADB=90°,E時AB的中點,∴DE=AB=AE=BE.同理,BF=DF.∵平行四邊形ABCD中,AB=CD,∴DE=BE=BF=DF,∴四邊形DEBF是菱形;(2)連接BF.∵菱形DEBF中,∠DEB=120°,∴∠EFB=60°,∴△BEF是等邊三角形.∵M是BF的中點,∴EM⊥BF.則EM=BE?sin60°=4×=2.即PF+PM的最小值是2.故答案為:2.【點睛】本題考查了菱形的判定與性質以及圖形的對稱,根據菱形的對稱性,理解PF+PM的最小值就是EM的長是關鍵.19、(0,),(4,3)【解析】試題分析:(Ⅰ)根據“剛出手時離地面高度為米、經過4秒到達離地面3米的高度和經過1秒落到地面”可得三點坐標;(Ⅱ)利用待定系數法求解可得.試題解析:解:(Ⅰ)由題意知,該二次函數圖象上的三個點的坐標分別是(0,)、(4,3)、(1,0).故答案為:(0,)、(4,3)、(1,0).(Ⅱ)設這個二次函數的解析式為y=ax2+bx+c,將(Ⅰ)三點坐標代入,得:,解得:,所以所求拋物線解析式為y=﹣x2+x+,因為鉛球從運動員拋出到落地所經過的時間為1秒,所以自變量的取值范圍為0≤x≤1.20、答案見解析【解析】由于AB=AC,那么∠B=∠C,而DE⊥AC,DF⊥AB可知∠BFD=∠CED=90°,又D是BC中點,可知BD=CD,利用AAS可證△BFD≌△CED,從而有DE=DF.21、(1)-3;(2).【解析】分析:(1)代入30°角的余弦函數值,結合零指數冪、負整數指數冪的意義及二次根式的相關運算法則計算即可;(2)按照解一元一次不等式組的一般步驟解答,并把解集規范的表示到數軸上即可.(1)原式===-3.(2)解不等式①得:,解不等式②得:,∴不等式組的解集為:不等式組的解集在數軸上表示:點睛:熟記零指數冪的意義:,(,為正整數)即30°角的余弦函數值是本題解題的關鍵.22、(1)100;(2)見解析;(3)108°;(4)1250.【解析】試題分析:(1)根據乙班參賽30人,所占比為20%,即可求出這四個班總人數;(2)根據丁班參賽35人,總人數是100,即可求出丁班所占的百分比,再用整體1減去其它所占的百分比,即可得出丙所占的百分比,再乘以參賽得總人數,即可得出丙班參賽得人數,從而補全統計圖;(3)根據甲班級所占的百分比,再乘以360°,即可得出答案;(4)根據樣本估計總體,可得答案.試題解析:(1)這四個班參與大賽的學生數是:30÷30%=100(人);故答案為100;(2)丁所占的百分比是:×100%=35%,丙所占的百分比是:1﹣30%﹣20%﹣35%=15%,則丙班得人數是:100×15%=15(人);如圖:(3)甲班級所對應的扇形圓心角的度數是:30%×360°=108°;(4)根據題意得:2000×=1250(人).答:全校的學生中參與這次活動的大約有1250人.考點:條形統計圖;扇形統計圖;樣本估計總體.23、(1)證明見解析;(2)ED=EB,證明見解析;(1)CG=2.【解析】

(1)、根據等邊三角形的性質得出∠CED=60°,從而得出∠EDB=10°,從而得出DE=BE;(2)、取AB的中點O,連接CO、EO,根據△ACO和△CDE為等邊三角形,從而得出△ACD和△OCE全等,然后得出△COE和△BOE全等,從而得出答案;(1)、取AB的中點O,連接CO、EO、EB,根據題意得出△COE和△BOE全等,然后得出△CEG和△DCO全等,設CG=a,則AG=5a,OD=a,根據題意列出一元一次方程求出a的值得出答案.【詳解】(1)∵△CDE是等邊三角形,∴∠CED=60°,∴∠EDB=60°﹣∠B=10°,∴∠EDB=∠B,∴DE=EB;(2)ED=EB,理由如下:取AB的中點O,連接CO、EO,∵∠ACB=90°,∠ABC=10°,∴∠A=60°,OC=OA,∴△ACO為等邊三角形,∴CA=CO,∵△CDE是等邊三角形,∴∠ACD=∠OCE,∴△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,∴△COE≌△BOE,∴EC=EB,∴ED=EB;(1)、取AB的中點O,連接CO、EO、EB,由(2)得△ACD≌△OCE,∴∠COE=∠A=60°,∴∠BOE=60°,△C

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論