




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
微專題29與圓有關的位置關系
考點精講
構建知識體系
考點梳理
1.點與圓的位置關系
點在圓外d=OA①r
點在圓上d=OB②r
點在圓內d=OC③r
2.直線與圓的位置關系(2024年首次涉及考查)
位置關系相離相切相交
d與r的
d④rd⑤rd⑥r
關系
交點的
沒有公共點有且只有一個公共點有兩個公共點
個數
示意圖
3.切線的性質與判定(6年6考)
(1)性質定理:圓的切線⑦于過切點的半徑(或直徑)
第1頁共20頁
(2)性質:①切線和圓只有一個公共點;②圓心到切線的距離等于圓的半徑;③切
線垂直于過切點的半徑;④經過圓心且垂直于切線的直線必過切點;⑤經過切點
且垂直于切線的直線必過圓心
(3)判定定理:經過半徑的外端并且垂直于這條半徑的直線是圓的切線
(4)判定方法:①直線與圓公共點已知:連半徑,證垂直;②直線與圓公共點未知:
作垂直,證半徑
4.切線長與切線長定理
圖示
在經過圓外一點的圓的切線上,這點與⑧之間的線段的長
切線長
度,叫做這點到圓的切線長
從圓外一點可以引圓的⑨條切線,它們的切線長⑩,這
切線長定理一點和圓心的連線平分兩條切線的夾角.(探索并證明切線長定理*
選學)
5.三角形的內切圓
(1)定義:與三角形各邊都相切的圓
(2)圓心O:內心(三角形的內切圓圓心或三角形三條?的交點)
(3)性質:三角形的內心到三角形?的距離相等
(4)角度關系:如圖③,圖④,∠BOC=90°+∠BAC
1
【知識拓展】2
任意三角形的內切圓直角三角形的內切圓
圖③圖④
第2頁共20頁
利用等面積法可得:=
r++
利用等面積法可得:=△??
r++
2?????+?-?
利用切線長定理可得:r=
???
???
2
練考點
1.已知☉O的半徑為3,P為平面內一點,OP=4,則點P在☉O.(填
“內”“上”或“外”)
2.已知圓的半徑為3,圓心到某直線的距離為2,則此直線與圓的位置關系
為.(填“相交”“相切”或“相離”)
3.如圖,AC是☉O的直徑.
(1)若BC是☉O的切線,則∠ACB=°;
(2)若AB=5,BC=4,AC=3,則BC與☉O.(填“相交”“相切”或“相
離”)
第3題圖
4.如圖,PA,PB是☉O的切線,A,B為切點,連接AB,OA,OB,PO,PO
交☉O于點C,交AB于點D,∠OAB=30°.
第4題圖
(1)∠APB的度數為;
(2)若OA=4,則OP的長為.
5.如圖,在△ABC中,∠C=90°,AC=3,BC=4,則△ABC的內切圓半徑r
=.
第3頁共20頁
第5題圖
6.如圖,△ABC的外接圓半徑為5,其圓心O恰好在中線CD上,若AB=CD,
則△ABC的面積為.
第6題圖
高頻考點
考點與切線有關的證明及計算(6年6考)
一、切線的判定(6年4考)
方法解讀
1.利用平行證垂直:
當需要證明的切線有一條垂線時,可證明過切點的半徑與這條垂線平行.
2.利用等角轉換證垂直:
題干中直接給出角度關系或給出切線與弦的夾角等于某個圓周角時,常通過等角
代換來證明.
3.利用三角形全等證垂直:
常在“共點雙切線型”圖形中運用,通過連接圓心與兩條切線的交點構造全等三
角形來證得垂直.
4.作垂直,證半徑:
過圓心作直線的垂線段,證明垂線段長等于半徑.
方法一連半徑、證垂直
第4頁共20頁
例1(利用平行證垂直)核心設問如圖,在等腰△ABC中,AB=AC,以AC為
直徑的☉O交BC于點E,過點E作EF⊥AB于點F.求證:EF是☉O的切線.[2019
廣東24(2)題考查]
例1題圖
例2(利用等角轉換證垂直)如圖,AB是☉O的直徑,C是圓上一點,過點C的
直線CD交BA延長線于點D,且∠DCA=∠B,求證:CD是☉O的切線.
例2題圖
例3(利用三角形全等證垂直)核心設問如圖,在Rt△ABC中,∠ACB=90°,
以BC為直徑作☉O,交AB于點D,點E為AC上一點,連接DE.若DE=CE,
求證:DE是☉O的切線.[2020廣東22(1)題考查]
例3題圖
方法二作垂直、證半徑
第5頁共20頁
例4核心設問如圖,在Rt△ABC中,∠ACB=90°,以AC上一點O為圓心,
OC長為半徑作☉O,連接BO,若BO平分∠ABC,求證:AB是☉O的切線.[2024
廣東17(2)題考查]
例4題圖
二、切線性質的相關證明及計算(6年2考)
方法解讀
1.證明角相等的方法:
(1)根據直角三角形中兩銳角互余,進行等量代換找到對應的角;
(2)根據平行線與等腰三角形的性質,進行等量代換找到相對應的角;
(3)通過證明兩個三角形全等,得到對應的角相等.
2.求線段長的方法:
(1)若題干中含有30°,45°,60°等特殊角度或出現三角函數sin、cos、tan時,
考慮利用三角函數求線段長;
(2)若題干無特殊角或三角函數,觀察圖形發現已知邊與所求邊分別所在的三角形
存在相似關系,考慮作輔助線將所求線段轉化到直角三角形中,利用相似三角形
求線段長.
3.證明線段平行的方法:
(1)通過角之間的等量代換,利用同位角相等、內錯角相等或同旁內角互補的方法
證明兩直線平行.
(2)設法將兩條線段放在同一個三角形中,利用中位線(或等分點)的性質證明兩直
線平行.
第6頁共20頁
例5如圖①,在△ABC中,∠A=90°,E是BC上一點,以BE為直徑的☉O
與AC相切于點D,連接BD,DE.
例5題圖①
(1)求證:∠ABD=∠CDE;
(2)求證:BD平分∠ABC;
(3)若∠ABD=30°,AD=,求OC的長;
3
(4)如圖②,若F為CD的中點,連接EF,∠C=30°,求證:EF∥AB.
例5題圖②
第7頁共20頁
真題及變式
命題點切線的判定及性質(6年6考)
1.(2020廣東22題8分)如圖①,在四邊形ABCD中,AD∥BC,∠DAB=90°,
AB是☉O的直徑,CO平分∠BCD.
(1)求證:直線CD與☉O相切;
(2)如圖②,記(1)中的切點為E,P為優弧上一點,AD=1,BC=2.求tan∠APE
的值.? 主站蜘蛛池模板: 正宁县| 龙川县| 普兰县| 城固县| 和顺县| 怀集县| 松溪县| 无锡市| 五河县| 灵石县| 罗源县| 乳山市| 富宁县| 泸溪县| 新平| 额尔古纳市| 桃源县| 赤峰市| 寿光市| 昭通市| 晋中市| 玛曲县| 新绛县| 黄骅市| 繁昌县| 望奎县| 永泰县| 闽清县| 巴彦县| 安远县| 夹江县| 苗栗市| 江华| 晋城| 三河市| 墨玉县| 青河县| 区。| 乌拉特前旗| 竹北市| 喜德县|