福建省龍巖市龍巖一中2024年高三5月高考模擬考試數學試題試卷_第1頁
福建省龍巖市龍巖一中2024年高三5月高考模擬考試數學試題試卷_第2頁
福建省龍巖市龍巖一中2024年高三5月高考模擬考試數學試題試卷_第3頁
福建省龍巖市龍巖一中2024年高三5月高考模擬考試數學試題試卷_第4頁
福建省龍巖市龍巖一中2024年高三5月高考模擬考試數學試題試卷_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

福建省龍巖市龍巖一中2023年高三5月高考模擬考試數學試題試卷請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知的部分圖象如圖所示,則的表達式是()A. B.C. D.2.若實數、滿足,則的最小值是()A. B. C. D.3.已知等差數列的公差為-2,前項和為,若,,為某三角形的三邊長,且該三角形有一個內角為,則的最大值為()A.5 B.11 C.20 D.254.已知四棱錐中,平面,底面是邊長為2的正方形,,為的中點,則異面直線與所成角的余弦值為()A. B. C. D.5.已知,,則()A. B. C. D.6.已知函數(,且)在區間上的值域為,則()A. B. C.或 D.或47.已知滿足,則的取值范圍為()A. B. C. D.8.小張家訂了一份報紙,送報人可能在早上之間把報送到小張家,小張離開家去工作的時間在早上之間.用表示事件:“小張在離開家前能得到報紙”,設送報人到達的時間為,小張離開家的時間為,看成平面中的點,則用幾何概型的公式得到事件的概率等于()A. B. C. D.9.已知復數,則()A. B. C. D.10.把滿足條件(1),,(2),,使得的函數稱為“D函數”,下列函數是“D函數”的個數為()①②③④⑤A.1個 B.2個 C.3個 D.4個11.《九章算術》有如下問題:“今有金箠,長五尺,斬本一尺,重四斤;斬末一尺,重二斤,問次一尺各重幾何?”意思是:“現在有一根金箠,長五尺在粗的一端截下一尺,重斤;在細的一端截下一尺,重斤,問各尺依次重多少?”按這一問題的顆設,假設金箠由粗到細各尺重量依次成等差數列,則從粗端開始的第二尺的重量是()A.斤 B.斤 C.斤 D.斤12.已知定義在上的函數在區間上單調遞增,且的圖象關于對稱,若實數滿足,則的取值范圍是()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知函數f(x)=若關于x的方程f(x)=kx有兩個不同的實根,則實數k的取值范圍是________.14.在中,已知,則的最小值是________.15.的展開式中的常數項為__________.16.設函數,若對于任意的,∈[2,,≠,不等式恒成立,則實數a的取值范圍是.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設函數.(1)當時,求不等式的解集;(2)若對恒成立,求的取值范圍.18.(12分)已知函數(其中是自然對數的底數)(1)若在R上單調遞增,求正數a的取值范圍;(2)若f(x)在處導數相等,證明:;(3)當時,證明:對于任意,若,則直線與曲線有唯一公共點(注:當時,直線與曲線的交點在y軸兩側).19.(12分)在平面直角坐標系中,已知橢圓:()的左、右焦點分別為、,且點、與橢圓的上頂點構成邊長為2的等邊三角形.(1)求橢圓的方程;(2)已知直線與橢圓相切于點,且分別與直線和直線相交于點、.試判斷是否為定值,并說明理由.20.(12分)已知函數,且.(1)若,求的最小值,并求此時的值;(2)若,求證:.21.(12分)某大型公司為了切實保障員工的健康安全,貫徹好衛生防疫工作的相關要求,決定在全公司范圍內舉行一次普查,為此需要抽驗1000人的血樣進行化驗,由于人數較多,檢疫部門制定了下列兩種可供選擇的方案.方案①:將每個人的血分別化驗,這時需要驗1000次.方案②:按個人一組進行隨機分組,把從每組個人抽來的血混合在一起進行檢驗,如果每個人的血均為陰性,則驗出的結果呈陰性,這個人的血只需檢驗一次(這時認為每個人的血化驗次);否則,若呈陽性,則需對這個人的血樣再分別進行一次化驗,這樣,該組個人的血總共需要化驗次.假設此次普查中每個人的血樣化驗呈陽性的概率為,且這些人之間的試驗反應相互獨立.(1)設方案②中,某組個人的每個人的血化驗次數為,求的分布列;(2)設,試比較方案②中,分別取2,3,4時,各需化驗的平均總次數;并指出在這三種分組情況下,相比方案①,化驗次數最多可以平均減少多少次?(最后結果四舍五入保留整數)22.(10分)已知直線:(為參數),曲線(為參數).(1)設與相交于,兩點,求;(2)若把曲線上各點的橫坐標壓縮為原來的倍,縱坐標壓縮為原來的倍,得到曲線,設點是曲線上的一個動點,求它到直線距離的最小值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】

由圖象求出以及函數的最小正周期的值,利用周期公式可求得的值,然后將點的坐標代入函數的解析式,結合的取值范圍求出的值,由此可得出函數的解析式.【詳解】由圖象可得,函數的最小正周期為,.將點代入函數的解析式得,得,,,則,,因此,.故選:D.【點睛】本題考查利用圖象求三角函數解析式,考查分析問題和解決問題的能力,屬于中等題.2.D【解析】

根據約束條件作出可行域,化目標函數為直線方程的斜截式,數形結合得到最優解,求出最優解的坐標,代入目標函數得答案【詳解】作出不等式組所表示的可行域如下圖所示:聯立,得,可得點,由得,平移直線,當該直線經過可行域的頂點時,該直線在軸上的截距最小,此時取最小值,即.故選:D.【點睛】本題考查簡單的線性規劃,考查數形結合的解題思想方法,是基礎題.3.D【解析】

由公差d=-2可知數列單調遞減,再由余弦定理結合通項可求得首項,即可求出前n項和,從而得到最值.【詳解】等差數列的公差為-2,可知數列單調遞減,則,,中最大,最小,又,,為三角形的三邊長,且最大內角為,由余弦定理得,設首項為,即得,所以或,又即,舍去,,d=-2前項和.故的最大值為.故選:D【點睛】本題考查等差數列的通項公式和前n項和公式的應用,考查求前n項和的最值問題,同時還考查了余弦定理的應用.4.B【解析】

由題意建立空間直角坐標系,表示出各點坐標后,利用即可得解.【詳解】平面,底面是邊長為2的正方形,如圖建立空間直角坐標系,由題意:,,,,,為的中點,.,,,異面直線與所成角的余弦值為即為.故選:B.【點睛】本題考查了空間向量的應用,考查了空間想象能力,屬于基礎題.5.D【解析】

分別解出集合然后求并集.【詳解】解:,故選:D【點睛】考查集合的并集運算,基礎題.6.C【解析】

對a進行分類討論,結合指數函數的單調性及值域求解.【詳解】分析知,.討論:當時,,所以,,所以;當時,,所以,,所以.綜上,或,故選C.【點睛】本題主要考查指數函數的值域問題,指數函數的值域一般是利用單調性求解,側重考查數學運算和數學抽象的核心素養.7.C【解析】

設,則的幾何意義為點到點的斜率,利用數形結合即可得到結論.【詳解】解:設,則的幾何意義為點到點的斜率,作出不等式組對應的平面區域如圖:由圖可知當過點的直線平行于軸時,此時成立;取所有負值都成立;當過點時,取正值中的最小值,,此時;故的取值范圍為;故選:C.【點睛】本題考查簡單線性規劃的非線性目標函數函數問題,解題時作出可行域,利用目標函數的幾何意義求解是解題關鍵.對于直線斜率要注意斜率不存在的直線是否存在.8.D【解析】

這是幾何概型,畫出圖形,利用面積比即可求解.【詳解】解:事件發生,需滿足,即事件應位于五邊形內,作圖如下:故選:D【點睛】考查幾何概型,是基礎題.9.B【解析】

利用復數除法、加法運算,化簡求得,再求得【詳解】,故.故選:B【點睛】本小題主要考查復數的除法運算、加法運算,考查復數的模,屬于基礎題.10.B【解析】

滿足(1)(2)的函數是偶函數且值域關于原點對稱,分別對所給函數進行驗證.【詳解】滿足(1)(2)的函數是偶函數且值域關于原點對稱,①不滿足(2);②不滿足(1);③不滿足(2);④⑤均滿足(1)(2).故選:B.【點睛】本題考查新定義函數的問題,涉及到函數的性質,考查學生邏輯推理與分析能力,是一道容易題.11.B【解析】

依題意,金箠由粗到細各尺重量構成一個等差數列,則,由此利用等差數列性質求出結果.【詳解】設金箠由粗到細各尺重量依次所成得等差數列為,設首項,則,公差,.故選B【點睛】本題考查了等差數列的通項公式,考查了推理能力與計算能力,屬于基礎題.12.C【解析】

根據題意,由函數的圖象變換分析可得函數為偶函數,又由函數在區間上單調遞增,分析可得,解可得的取值范圍,即可得答案.【詳解】將函數的圖象向左平移個單位長度可得函數的圖象,由于函數的圖象關于直線對稱,則函數的圖象關于軸對稱,即函數為偶函數,由,得,函數在區間上單調遞增,則,得,解得.因此,實數的取值范圍是.故選:C.【點睛】本題考查利用函數的單調性與奇偶性解不等式,注意分析函數的奇偶性,屬于中等題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】由圖可知,當直線y=kx在直線OA與x軸(不含它們)之間時,y=kx與y=f(x)的圖像有兩個不同交點,即方程有兩個不相同的實根.14.【解析】分析:可先用向量的數量積公式將原式變形為:,然后再結合余弦定理整理為,再由cosC的余弦定理得到a,b的關系式,最后利用基本不等式求解即可.詳解:已知,可得,將角A,B,C的余弦定理代入得,由,當a=b時取到等號,故cosC的最小值為.點睛:考查向量的數量積、余弦定理、基本不等式的綜合運用,能正確轉化是解題關鍵.屬于中檔題.15.31【解析】

由二項式定理及其展開式得通項公式得:因為的展開式得通項為,則的展開式中的常數項為:,得解.【詳解】解:,則的展開式中的常數項為:.故答案為:31.【點睛】本題考查二項式定理及其展開式的通項公式,求某項的導數,考查計算能力.16.【解析】試題分析:由題意得函數在[2,上單調遞增,當時在[2,上單調遞增;當時在上單調遞增;在上單調遞減,因此實數a的取值范圍是考點:函數單調性三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)或;(2)或.【解析】試題分析:(1)根據絕對值定義將不等式化為三個不等式組,分別求解集,最后求并集(2)根據絕對值三角不等式得最小值,再解含絕對值不等式可得的取值范圍.試題解析:(1)等價于或或,解得:或.故不等式的解集為或.(2)因為:所以,由題意得:,解得或.點睛:含絕對值不等式的解法有兩個基本方法,一是運用零點分區間討論,二是利用絕對值的幾何意義求解.法一是運用分類討論思想,法二是運用數形結合思想,將絕對值不等式與函數以及不等式恒成立交匯、滲透,解題時強化函數、數形結合與轉化化歸思想方法的靈活應用,這是命題的新動向.18.(1);(2)見解析;(3)見解析【解析】

(1)需滿足恒成立,只需即可;(2)根據的單調性,構造新函數,并令,根據的單調性即可得證;(3)將問題轉化為證明有唯一實數解,對求導,判斷其單調性,結合題目條件與不等式的放縮,即可得證.【詳解】;令,則恒成立;,;的取值范圍是;(2)證明:由(1)知,在上單調遞減,在上單調遞增;;令,;則;令,則;;;(3)證明:,,要證明有唯一實數解;當時,;當時,;即對于任意實數,一定有解;;當時,有兩個極值點;函數在,,上單調遞增,在上單調遞減;又;只需,在時恒成立;只需;令,其中一個正解是;,;單調遞增,,(1);;;綜上得證.【點睛】本題考查了利用導數研究函數的單調性,考查了利用導數證明不等式,考查了轉化思想、不等式的放縮,屬難題.19.(1)(2)為定值.【解析】

(1)根據題意,得出,從而得出橢圓的標準方程.(2)根據題意設直線方程:,因為直線與橢圓相切,這有一個交點,聯立直線與橢圓方程得,則,解得①把和代入,得和,,的表達式,比即可得出為定值.【詳解】解:(1)依題意,,,.所以橢圓的標準方程為.(2)為定值.①因為直線分別與直線和直線相交,所以,直線一定存在斜率.②設直線:,由得,由,得.①把代入,得,把代入,得,又因為,所以,,②由①式,得,③把③式代入②式,得,,即為定值.【點睛】本題考查橢圓的定義、方程、和性質,主要考查橢圓方程的運用,考查橢圓的定值問題,考查計算能力和轉化思想,是中檔題.20.(1)最小值為,此時;(2)見解析【解析】

(1)由已知得,法一:,,根據二次函數的最值可求得;法二:運用基本不等式構造,可得最值;法三:運用柯西不等式得:,可得最值;(2)由絕對值不等式得,,又,可得證.【詳解】(1),法一:,,的最小值為,此時;法二:,,即的最小值為,此時;法三:由柯西不等式得:,,即的最小值為,此時;(2),,又,.【點睛】本題考查運用基本不等式,柯西不等式,絕對值不等式進行不等式的證明和求解函

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論