




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
安徽省安慶市達標名校2022-2023學年高三1月第一次診斷數學試題文試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數的圖像上有且僅有四個不同的關于直線對稱的點在的圖像上,則的取值范圍是()A. B. C. D.2.已知為虛數單位,實數滿足,則()A.1 B. C. D.3.已知函數,若函數在上有3個零點,則實數的取值范圍為()A. B. C. D.4.設等比數列的前項和為,則“”是“”的()A.充分不必要 B.必要不充分C.充要 D.既不充分也不必要5.斜率為1的直線l與橢圓相交于A、B兩點,則的最大值為A.2 B. C. D.6.已知隨機變量服從正態分布,,()A. B. C. D.7.在函數:①;②;③;④中,最小正周期為的所有函數為()A.①②③ B.①③④ C.②④ D.①③8.若復數滿足(是虛數單位),則()A. B. C. D.9.已知雙曲線(,)的左、右頂點分別為,,虛軸的兩個端點分別為,,若四邊形的內切圓面積為,則雙曲線焦距的最小值為()A.8 B.16 C. D.10.已知拋物線:()的焦點為,為該拋物線上一點,以為圓心的圓與的準線相切于點,,則拋物線方程為()A. B. C. D.11.已知雙曲線的左、右焦點分別為、,拋物線與雙曲線有相同的焦點.設為拋物線與雙曲線的一個交點,且,則雙曲線的離心率為()A.或 B.或 C.或 D.或12.執行如圖所示的程序框圖,則輸出的結果為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.(5分)已知,且,則的值是____________.14.已知數列的前項和為,,且滿足,則數列的前10項的和為______.15.已知函數,則過原點且與曲線相切的直線方程為____________.16.假設10公里長跑,甲跑出優秀的概率為,乙跑出優秀的概率為,丙跑出優秀的概率為,則甲、乙、丙三人同時參加10公里長跑,剛好有2人跑出優秀的概率為________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在直角坐標系中,是過定點且傾斜角為的直線;在極坐標系(以坐標原點為極點,以軸非負半軸為極軸,取相同單位長度)中,曲線的極坐標方程為.(1)寫出直線的參數方程,并將曲線的方程化為直角坐標方程;(2)若曲線與直線相交于不同的兩點,求的取值范圍.18.(12分)在中,角所對的邊分別是,且.(1)求角的大??;(2)若,求邊長.19.(12分)已知點和橢圓.直線與橢圓交于不同的兩點,.(1)當時,求的面積;(2)設直線與橢圓的另一個交點為,當為中點時,求的值.20.(12分)數列滿足,且.(1)證明:數列是等差數列,并求數列的通項公式;(2)求數列的前項和.21.(12分)已知橢圓的左,右焦點分別為,,,M是橢圓E上的一個動點,且的面積的最大值為.(1)求橢圓E的標準方程,(2)若,,四邊形ABCD內接于橢圓E,,記直線AD,BC的斜率分別為,,求證:為定值.22.(10分)2018年9月,臺風“山竹”在我國多個省市登陸,造成直接經濟損失達52億元.某青年志愿者組織調查了某地區的50個農戶在該次臺風中造成的直接經濟損失,將收集的數據分成五組:,,,,(單位:元),得到如圖所示的頻率分布直方圖.(1)試根據頻率分布直方圖估計該地區每個農戶的平均損失(同一組中的數據用該組區間的中點值代表);(2)臺風后該青年志愿者與當地政府向社會發出倡議,為該地區的農戶捐款幫扶,現從這50戶并且損失超過4000元的農戶中隨機抽取2戶進行重點幫扶,設抽出損失超過8000元的農戶數為,求的分布列和數學期望.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.D【解析】
根據對稱關系可將問題轉化為與有且僅有四個不同的交點;利用導數研究的單調性從而得到的圖象;由直線恒過定點,通過數形結合的方式可確定;利用過某一點曲線切線斜率的求解方法可求得和,進而得到結果.【詳解】關于直線對稱的直線方程為:原題等價于與有且僅有四個不同的交點由可知,直線恒過點當時,在上單調遞減;在上單調遞增由此可得圖象如下圖所示:其中、為過點的曲線的兩條切線,切點分別為由圖象可知,當時,與有且僅有四個不同的交點設,,則,解得:設,,則,解得:,則本題正確選項:【點睛】本題考查根據直線與曲線交點個數確定參數范圍的問題;涉及到過某一點的曲線切線斜率的求解問題;解題關鍵是能夠通過對稱性將問題轉化為直線與曲線交點個數的問題,通過確定直線恒過的定點,采用數形結合的方式來進行求解.2.D【解析】,則故選D.3.B【解析】
根據分段函數,分當,,將問題轉化為的零點問題,用數形結合的方法研究.【詳解】當時,,令,在是增函數,時,有一個零點,當時,,令當時,,在上單調遞增,當時,,在上單調遞減,所以當時,取得最大值,因為在上有3個零點,所以當時,有2個零點,如圖所示:所以實數的取值范圍為綜上可得實數的取值范圍為,故選:B【點睛】本題主要考查了函數的零點問題,還考查了數形結合的思想和轉化問題的能力,屬于中檔題.4.A【解析】
首先根據等比數列分別求出滿足,的基本量,根據基本量的范圍即可確定答案.【詳解】為等比數列,若成立,有,因為恒成立,故可以推出且,若成立,當時,有,當時,有,因為恒成立,所以有,故可以推出,,所以“”是“”的充分不必要條件.故選:A.【點睛】本題主要考查了等比數列基本量的求解,充分必要條件的集合關系,屬于基礎題.5.C【解析】
設出直線的方程,代入橢圓方程中消去y,根據判別式大于0求得t的范圍,進而利用弦長公式求得|AB|的表達式,利用t的范圍求得|AB|的最大值.【詳解】解:設直線l的方程為y=x+t,代入y2=1,消去y得x2+2tx+t2﹣1=0,由題意得△=(2t)2﹣1(t2﹣1)>0,即t2<1.弦長|AB|=4.故選:C.【點睛】本題主要考查了橢圓的應用,直線與橢圓的關系.常需要把直線與橢圓方程聯立,利用韋達定理,判別式找到解決問題的突破口.6.B【解析】
利用正態分布密度曲線的對稱性可得出,進而可得出結果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態分布密度曲線的對稱性求概率,屬于基礎題.7.A【解析】逐一考查所給的函數:,該函數為偶函數,周期;將函數圖象x軸下方的圖象向上翻折即可得到的圖象,該函數的周期為;函數的最小正周期為;函數的最小正周期為;綜上可得最小正周期為的所有函數為①②③.本題選擇A選項.點睛:求三角函數式的最小正周期時,要盡可能地化為只含一個三角函數的式子,否則很容易出現錯誤.一般地,經過恒等變形成“y=Asin(ωx+φ),y=Acos(ωx+φ),y=Atan(ωx+φ)”的形式,再利用周期公式即可.8.B【解析】
利用復數乘法運算化簡,由此求得.【詳解】依題意,所以.故選:B【點睛】本小題主要考查復數的乘法運算,考查復數模的計算,屬于基礎題.9.D【解析】
根據題意畫出幾何關系,由四邊形的內切圓面積求得半徑,結合四邊形面積關系求得與等量關系,再根據基本不等式求得的取值范圍,即可確定雙曲線焦距的最小值.【詳解】根據題意,畫出幾何關系如下圖所示:設四邊形的內切圓半徑為,雙曲線半焦距為,則所以,四邊形的內切圓面積為,則,解得,則,即故由基本不等式可得,即,當且僅當時等號成立.故焦距的最小值為.故選:D【點睛】本題考查了雙曲線的定義及其性質的簡單應用,圓錐曲線與基本不等式綜合應用,屬于中檔題.10.C【解析】
根據拋物線方程求得點的坐標,根據軸、列方程,解方程求得的值.【詳解】不妨設在第一象限,由于在拋物線上,所以,由于以為圓心的圓與的準線相切于點,根據拋物線的定義可知,、軸,且.由于,所以直線的傾斜角為,所以,解得,或(由于,故舍去).所以拋物線的方程為.故選:C【點睛】本小題主要考查拋物線的定義,考查直線的斜率,考查數形結合的數學思想方法,屬于中檔題.11.D【解析】
設,,根據和拋物線性質得出,再根據雙曲線性質得出,,最后根據余弦定理列方程得出、間的關系,從而可得出離心率.【詳解】過分別向軸和拋物線的準線作垂線,垂足分別為、,不妨設,,則,為雙曲線上的點,則,即,得,,又,在中,由余弦定理可得,整理得,即,,解得或.故選:D.【點睛】本題考查了雙曲線離心率的求解,涉及雙曲線和拋物線的簡單性質,考查運算求解能力,屬于中檔題.12.D【解析】循環依次為直至結束循環,輸出,選D.點睛:算法與流程圖的考查,側重于對流程圖循環結構的考查.先明晰算法及流程圖的相關概念,包括選擇結構、循環結構、偽代碼,其次要重視循環起點條件、循環次數、循環終止條件,更要通過循環規律,明確流程圖研究的數學問題,是求和還是求項.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】
由于,且,則,得,則.14.1【解析】
由得時,,兩式作差,可求得數列的通項公式,進一步求出數列的和.【詳解】解:數列的前項和為,,且滿足,①當時,,②①-②得:,整理得:(常數),故數列是以為首項,2為公比的等比數列,所以(首項不符合通項),故,所以:,故答案為:1.【點睛】本題主要考查數列的通項公式的求法及應用,數列的前項和的公式,屬于基礎題.15.【解析】
設切點坐標為,利用導數求出曲線在切點的切線方程,將原點代入切線方程,求出的值,于此可得出所求的切線方程.【詳解】設切點坐標為,,,,則曲線在點處的切線方程為,由于該直線過原點,則,得,因此,則過原點且與曲線相切的直線方程為,故答案為.【點睛】本題考查導數的幾何意義,考查過點作函數圖象的切線方程,求解思路是:(1)先設切點坐標,并利用導數求出切線方程;(2)將所過點的坐標代入切線方程,求出參數的值,可得出切點的坐標;(3)將參數的值代入切線方程,可得出切線的方程.16.【解析】
分跑出優秀的人為:甲、乙和甲、丙和乙、丙三種情況分別計算再求和即可.【詳解】剛好有2人跑出優秀有三種情況:其一是只有甲、乙兩人跑出優秀的概率為;其二是只有甲、丙兩人跑出優秀的概率為;其三是只有乙、丙兩人跑出優秀的概率為,三種情況相加得.即剛好有2人跑出優秀的概率為.故答案為:【點睛】本題主要考查了分類方法求解事件概率的問題,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)(為參數),;(2)【解析】分析:(1)直線的參數方程為(為參數),其中表示之間的距離,而極坐標方程可化為,從而的直角方程為.(2)設,則,利用在圓上得到滿足的方程,最后利用韋達定理就可求出兩條線段的和.詳解:(1)直線的參數方程為(為參數).曲線的極坐標方程可化為.把,代入曲線的極坐標方程可得,即.(2)把直線的參數方程為(為參數)代入圓的方程可得:.∵曲線與直線相交于不同的兩點,∴,∴,又,∴.又,.∴,∵,∴,∴.∴的取值范圍是.點睛:(1)直線的參數方程有多種形式,其中一種為(為直線的傾斜角,是參數),這樣的參數方程中的參數有明確的幾何意義,它表示之間的距離.(2)直角坐標方程轉為極坐標方程的關鍵是利用公式,而極坐標方程轉化為直角坐標方程的關鍵是利用公式,后者也可以把極坐標方程變形盡量產生以便轉化.18.(1);(2).【解析】
(1)把代入已知條件,得到關于的方程,得到的值,從而得到的值.(2)由(1)中得到的的值和已知條件,求出,再根據正弦定理求出邊長.【詳解】(1)因為,,所以,,所以,即.因為,所以,因為,所以.(2).在中,由正弦定理得,所以,解得.【點睛】本題考查三角函數公式的運用,正弦定理解三角形,屬于簡單題.19.(1);(2)或【解析】
(1)聯立直線的方程和橢圓方程,求得交點的橫坐標,由此求得三角形的面積.(2)法一:根據的坐標求得的坐標,將的坐標都代入橢圓方程,化簡后求得的坐標,進而求得的值.法二:設出直線的方程,聯立直線的方程和橢圓的方程,化簡后寫出根與系數關系,結合求得點的坐標,進而求得的值.【詳解】(1)設,,若,則直線的方程為,由,得,解得,,設直線與軸交于點,則且.(2)法一:設點因為,,所以又點,都在橢圓上,所以解得或所以或.法二:設顯然直線有斜率,設直線的方程為由,得所以又解得或所以或所以或.【點睛】本小題主要考查直線和橢圓的位置關系,考查橢圓中三角形面積的求法,考查運算求解能力,屬于中檔題.20.(1)證明見解析,;(2)【解析】
(1)利用,推出,然后利用等差數列的通項公式,即可求解;(2)由(1)知,利用裂項法,即可求解數列的前n項和.【詳解】(1)由題意,數列滿足且可得,即,所以數列是公差,首項的等差數列,故,所以.(2)由(1)知,所以數列的前n項和:==【點睛】本題主要考查了等差數列的通項公式,以及“裂項法”求解數列的前n項和,其中解答中熟記等差數列的定義和通項公式,合理利用“裂項法”求和是解答的關鍵,著重考查了推理與運算能力.21.(1)(2)證明見解析【解析】
(1)設橢圓E的半焦距為c,由題意可知,當M為橢圓E的上頂點或下頂點時,
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 拆卸安裝安全協議書6篇
- T/ZHCA 101-2020體重控制人群代餐減重干預技術規范
- 健康促進醫院課件
- 電話銷售技巧培訓課件
- 語言活動認識新朋友
- 社區健康與公共衛生服務
- 2025西湖大學輔導員考試試題及答案
- 2025西安電力機械制造公司機電學院輔導員考試試題及答案
- 2025衡陽幼兒師范高等??茖W校輔導員考試試題及答案
- 2025皖西衛生職業學院輔導員考試試題及答案
- 古代小說戲曲專題-形考任務4-國開-參考資料
- 福建省漳州市英語小升初2024-2025學年復習試卷及解答
- 水利工程施工監理規范SL288-2014(CB、JL用表全套)
- 建筑中級職稱《建筑工程管理》歷年考試真題題庫(含答案)
- DL∕T 707-2014 HS系列環錘式破碎機
- (正式版)JB∕T 14455-2024 土方機械 非公路自卸車 電傳動系統控制要求
- 費用組成-特殊施工增加費課件講解
- 2024年湖南省長沙市雅禮實驗中學中考二??荚囉⒄Z試題
- 2023年八年級歷史下冊競賽試卷
- 國民經濟行業分類代碼表
- 2024年云南省中考歷史試卷(附答案)
評論
0/150
提交評論