云南經貿外事職業學院《設計綜合表現》2023-2024學年第一學期期末試卷_第1頁
云南經貿外事職業學院《設計綜合表現》2023-2024學年第一學期期末試卷_第2頁
云南經貿外事職業學院《設計綜合表現》2023-2024學年第一學期期末試卷_第3頁
云南經貿外事職業學院《設計綜合表現》2023-2024學年第一學期期末試卷_第4頁
云南經貿外事職業學院《設計綜合表現》2023-2024學年第一學期期末試卷_第5頁
已閱讀5頁,還剩3頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

學校________________班級____________姓名____________考場____________準考證號學校________________班級____________姓名____________考場____________準考證號…………密…………封…………線…………內…………不…………要…………答…………題…………第1頁,共3頁云南經貿外事職業學院

《設計綜合表現》2023-2024學年第一學期期末試卷題號一二三四總分得分批閱人一、單選題(本大題共30個小題,每小題1分,共30分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、在計算機視覺的圖像檢索任務中,需要根據用戶提供的示例圖像從大規模圖像數據庫中找到相似的圖像。假設要構建一個高效的圖像搜索引擎,能夠快速準確地返回相關圖像。以下哪種圖像檢索方法在處理大規模數據時性能更優?()A.基于內容的圖像檢索B.基于文本標注的圖像檢索C.基于哈希編碼的圖像檢索D.基于深度學習特征的圖像檢索2、在計算機視覺中,特征提取是非常關鍵的一步。假設我們要對一組風景圖像進行特征提取,以便后續的圖像檢索和分類任務。以下哪種特征提取方法能夠捕捉到圖像的全局和局部特征,并且對圖像的旋轉、縮放等變換具有較好的不變性?()A.尺度不變特征變換(SIFT)B.方向梯度直方圖(HOG)C.局部二值模式(LBP)D.卷積神經網絡自動學習的特征3、在計算機視覺中,圖像分類是一項重要任務。假設我們要對大量的動物圖片進行分類,將其分為貓、狗、鳥等類別。以下關于圖像分類方法的描述,哪一項是不準確的?()A.基于深度學習的卷積神經網絡(CNN)在圖像分類任務中表現出色,能夠自動學習圖像的特征B.傳統的機器學習方法如支持向量機(SVM)在處理大規模圖像數據時,性能通常不如深度學習方法C.圖像分類只需要考慮圖像的顏色和形狀等低層次特征,高層語義信息對分類結果影響不大D.為了提高分類準確率,可以使用數據增強技術,如旋轉、翻轉、裁剪等操作來擴充數據集4、計算機視覺在無人駕駛飛行器(UAV)中的應用可以輔助飛行和導航。假設一架UAV需要依靠視覺信息避開障礙物,以下關于UAV計算機視覺應用的描述,正確的是:()A.僅依靠單目視覺就能準確估計障礙物的距離和速度B.視覺信息在UAV飛行中的作用有限,主要依靠其他傳感器如GPSC.多目視覺和深度學習算法的結合可以為UAV提供更準確的環境感知和障礙物避讓能力D.UAV的飛行速度和姿態對視覺系統的性能沒有影響5、計算機視覺在自動駕駛領域有重要應用。假設車輛需要根據攝像頭采集的圖像來識別道路上的交通標志,并且要在不同天氣和光照條件下都能準確識別。以下哪種方法可能有助于提高交通標志識別的魯棒性?()A.使用多個不同類型的攝像頭獲取圖像B.僅依賴顏色特征進行識別C.采用簡單的線性分類器進行標志分類D.減少訓練數據中的交通標志種類6、計算機視覺在自動駕駛領域有廣泛的應用。假設一輛自動駕駛汽車需要識別道路上的交通標志,以下關于自動駕駛中的計算機視覺應用的描述,哪一項是不正確的?()A.多攝像頭融合可以提供更全面的道路信息,提高交通標志識別的準確性B.深度學習模型可以實時處理攝像頭采集的圖像,快速準確地識別交通標志C.除了交通標志識別,計算機視覺還可以用于車道檢測、行人檢測和障礙物檢測等任務D.自動駕駛中的計算機視覺系統完全不需要其他傳感器(如雷達、激光雷達)的輔助,僅依靠圖像信息就能實現安全可靠的駕駛7、在計算機視覺的表情識別任務中,判斷圖像或視頻中人物的表情。假設要開發一個用于在線教育的表情識別系統,以下關于表情識別方法的描述,哪一項是不正確的?()A.可以通過分析面部肌肉的運動和特征點的變化來識別表情B.深度學習模型能夠學習不同表情的模式和特征,實現準確的表情分類C.表情識別系統需要考慮光照、頭部姿態和遮擋等因素的影響D.表情識別可以準確地識別出所有細微和復雜的表情,不受個體差異和文化背景的影響8、計算機視覺在無人駕駛中的應用至關重要。假設要通過車載攝像頭識別道路上的交通標志和標線,以下關于應對復雜環境變化的策略,哪一項是不正確的?()A.利用多模態數據融合,如結合攝像頭和激光雷達的信息B.定期更新模型,適應新出現的交通標志和標線C.只依靠單一攝像頭的圖像信息,不考慮其他傳感器D.對不同天氣和光照條件下的數據進行增強訓練9、計算機視覺中的場景理解是理解圖像或視頻中的場景內容和語義信息。假設要理解一張城市街道的圖像,以下關于場景理解方法的描述,哪一項是不正確的?()A.可以通過對象檢測、語義分割和場景分類等任務來實現場景理解B.結合上下文信息和先驗知識能夠提高場景理解的準確性C.深度學習模型能夠學習場景中的全局特征和關系,實現對場景的深入理解D.場景理解可以在沒有任何先驗知識和上下文信息的情況下,準確地推斷出場景的語義10、在計算機視覺的視頻分析中,假設要對一段監控視頻中的異常行為進行檢測。以下關于特征提取的方法,哪一項是不太適合的?()A.提取每一幀圖像的顏色、紋理等低級特征B.利用光流信息來捕捉物體的運動特征C.僅分析視頻的音頻信息,忽略圖像內容D.結合時空特征,同時考慮空間和時間維度的信息11、在計算機視覺中,深度估計是確定場景中物體距離相機的距離。以下關于深度估計的說法,錯誤的是()A.可以通過立體視覺、結構光或飛行時間等技術來獲取深度信息B.深度學習方法在單目深度估計中取得了顯著進展C.深度估計對于三維重建、虛擬現實和增強現實等應用具有重要意義D.深度估計的結果總是非常精確,不需要進行后處理和優化12、假設要構建一個能夠對書畫作品進行真偽鑒定的計算機視覺系統,需要對作品的筆觸、線條和風格等特征進行分析。以下哪種技術在書畫鑒定中可能具有應用前景?()A.筆跡分析B.風格遷移C.圖像風格分析D.以上都是13、在計算機視覺的圖像檢索任務中,需要根據用戶提供的查詢圖像找到相似的圖像。假設我們有一個大型的圖像數據庫,以下哪種圖像表示方法能夠提高圖像檢索的效率和準確性?()A.基于全局特征的圖像表示B.基于局部特征的圖像表示C.基于深度學習的圖像嵌入表示D.基于顏色直方圖的圖像表示14、在醫學圖像分析中,計算機視覺技術有助于疾病的診斷和治療。假設醫生需要對一組肺部CT圖像進行分析,以檢測是否存在腫瘤。以下關于醫學圖像分析中的計算機視覺的描述,哪一項是不準確的?()A.計算機視覺算法可以自動檢測和定位肺部腫瘤,提高診斷的效率和準確性B.能夠對圖像進行增強和預處理,突出病變區域,便于醫生觀察和判斷C.由于醫學圖像的復雜性和個體差異,計算機視覺的結果總是完全準確無誤的D.可以通過大量標注的醫學圖像數據進行訓練,學習正常和異常的圖像特征15、在圖像去噪中,BM3D(Block-Matchingand3DFiltering)算法的優勢在于()A.去噪效果好B.保持圖像細節C.計算效率高D.以上都是16、計算機視覺中的動作識別是一個具有挑戰性的任務。假設要識別一段體育比賽視頻中的運動員動作,以下關于特征選擇的方法,哪一項是不太可行的?()A.提取運動員的身體輪廓和關節位置作為特征B.僅使用視頻的音頻信息來判斷運動員的動作C.計算視頻幀之間的光流變化作為動作特征D.結合空間和時間維度的特征來描述動作17、計算機視覺在工業檢測中的應用可以提高產品質量和生產效率。假設一個工廠需要檢測生產線上的零件是否存在缺陷。以下關于工業檢測中的計算機視覺的描述,哪一項是不準確的?()A.能夠快速準確地檢測出零件的表面缺陷、尺寸偏差等問題B.可以通過機器視覺系統對零件進行自動分類和篩選C.工業檢測中的計算機視覺系統需要高度的穩定性和可靠性,對環境變化不敏感D.計算機視覺在工業檢測中的應用已經非常成熟,不需要人工干預和校驗18、當進行圖像的光流估計時,假設要計算圖像中像素的運動速度和方向。以下哪種光流估計算法在復雜場景下可能更準確?()A.Horn-Schunck算法B.Lucas-Kanade算法C.隨機估計光流D.不進行光流估計,忽略像素的運動信息19、在計算機視覺的圖像配準任務中,需要將不同視角或時間拍攝的圖像進行對齊。假設要將兩張具有一定旋轉和平移差異的圖像進行配準,以下關于圖像配準方法的描述,正確的是:()A.基于特征點匹配的圖像配準方法對圖像的變形和光照變化不敏感B.直接使用像素值的相似性度量就能實現準確的圖像配準C.圖像配準不需要考慮圖像的分辨率和比例尺差異D.深度學習在圖像配準中的應用還不成熟,不如傳統方法有效20、在計算機視覺的視覺跟蹤與定位任務中,實時跟蹤物體并確定其在空間中的位置。假設要在一個室內環境中跟蹤一個移動的機器人并確定其位置,以下關于視覺跟蹤與定位方法的描述,正確的是:()A.基于標志物的跟蹤與定位方法在標志物被遮擋時仍能準確工作B.視覺里程計方法能夠獨立實現高精度的長期跟蹤與定位C.同時使用多個相機進行觀測不能提高跟蹤與定位的性能D.環境的光照變化和動態障礙物對視覺跟蹤與定位的結果影響較小21、計算機視覺在工業檢測中的應用可以提高生產效率和質量。假設要檢測生產線上產品的表面缺陷,以下關于工業檢測中的計算機視覺技術的描述,正確的是:()A.傳統的機器視覺方法在檢測復雜的表面缺陷時比深度學習方法更可靠B.深度學習模型需要大量的有缺陷和無缺陷樣本進行訓練,才能準確檢測出各種缺陷C.工業檢測中的計算機視覺系統不需要考慮實時性和準確性的平衡D.產品的顏色和材質對表面缺陷檢測的結果沒有影響22、在計算機視覺的圖像去噪任務中,假設要去除一張受到嚴重噪聲污染的圖像中的噪聲,同時盡可能保留圖像的細節和邊緣信息。以下哪種去噪方法可能更適合?()A.中值濾波,用鄰域中值代替像素值B.均值濾波,用鄰域平均值代替像素值C.基于深度學習的圖像去噪模型,如DnCNND.不進行任何去噪處理,保留原始噪聲圖像23、計算機視覺中的圖像去霧是一個具有挑戰性的問題。假設要去除一張有濃霧的風景圖像中的霧氣,以下哪種方法可能需要對大氣散射模型有深入的了解?()A.基于深度學習的去霧方法B.基于物理模型的去霧方法C.基于圖像增強的去霧方法D.基于濾波的去霧方法24、在計算機視覺的場景理解任務中,假設要理解一個室內場景的布局和功能,例如判斷是辦公室還是客廳。以下哪種信息對于準確理解場景是至關重要的?()A.物體的類別和位置B.圖像的顏色分布C.圖像的拍攝角度D.隨機選擇圖像中的部分區域進行分析25、計算機視覺是一門研究如何讓計算機從圖像或視頻中獲取信息和理解內容的學科。在計算機視覺的應用中,目標檢測是一項重要任務。以下關于目標檢測的描述,不準確的是()A.目標檢測能夠準確識別圖像或視頻中特定類別的物體,并確定其位置和大小B.深度學習技術的發展極大地提高了目標檢測的準確性和效率C.目標檢測只適用于靜態圖像,對于動態視頻的處理效果不佳D.目標檢測在自動駕駛、安防監控和工業檢測等領域有著廣泛的應用26、計算機視覺中的圖像超分辨率重建旨在提高圖像的分辨率。假設要將一張低分辨率的衛星圖像重建為高分辨率圖像,以下關于模型訓練的挑戰,哪一項是最為突出的?()A.缺乏足夠的高分辨率衛星圖像數據用于訓練B.模型的訓練時間過長,難以在短時間內得到結果C.難以評估重建后的圖像質量,沒有明確的標準D.計算資源需求過大,普通計算機難以承受27、在計算機視覺中,以下哪種技術常用于圖像的超分辨率重建的上采樣方法?()A.反卷積B.亞像素卷積C.最近鄰插值D.以上都是28、計算機視覺中的顯著性檢測旨在找出圖像中引人注目的區域。假設要在一張復雜的自然風景圖像中檢測顯著性區域,以下關于顯著性檢測方法的描述,哪一項是不正確的?()A.基于對比度的方法通過計算圖像區域與周圍區域的差異來確定顯著性B.基于頻域分析的方法可以從圖像的頻譜中提取顯著性信息C.深度學習方法能夠學習圖像的全局和局部特征,實現更準確的顯著性檢測D.顯著性檢測的結果總是與人類的視覺注意力機制完全一致,沒有偏差29、計算機視覺中的圖像超分辨率技術用于提高圖像的分辨率。假設要將一張低分辨率的圖像恢復成高分辨率圖像,以下關于圖像超分辨率方法的描述,正確的是:()A.基于插值的圖像超分辨率方法能夠生成清晰逼真的高分辨率圖像B.深度學習中的生成對抗網絡(GAN)在圖像超分辨率任務中無法發揮作用C.圖像超分辨率的效果不受原始低分辨率圖像的質量和內容的限制D.結合先驗知識和深度學習的方法可以改善圖像超分辨率的效果30、計算機視覺中的無人駕駛技術是一個綜合性的應用領域。以下關于無人駕駛中的計算機視覺的說法,不正確的是()A.計算機視覺在無人駕駛

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論