2024屆上海市第三女子中學高考三輪模擬試卷數學試題卷_第1頁
2024屆上海市第三女子中學高考三輪模擬試卷數學試題卷_第2頁
2024屆上海市第三女子中學高考三輪模擬試卷數學試題卷_第3頁
2024屆上海市第三女子中學高考三輪模擬試卷數學試題卷_第4頁
2024屆上海市第三女子中學高考三輪模擬試卷數學試題卷_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023屆上海市第三女子中學高考三輪模擬試卷數學試題卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.歐拉公式為,(虛數單位)是由瑞士著名數學家歐拉發現的,它將指數函數的定義域擴大到復數,建立了三角函數和指數函數的關系,它在復變函數論里非常重要,被譽為“數學中的天橋”.根據歐拉公式可知,表示的復數位于復平面中的()A.第一象限 B.第二象限 C.第三象限 D.第四象限2.已知變量x,y間存在線性相關關系,其數據如下表,回歸直線方程為,則表中數據m的值為()變量x0123變量y35.57A.0.9 B.0.85 C.0.75 D.0.53.已知集合,集合,若,則()A. B. C. D.4.如圖,矩形ABCD中,,,E是AD的中點,將沿BE折起至,記二面角的平面角為,直線與平面BCDE所成的角為,與BC所成的角為,有如下兩個命題:①對滿足題意的任意的的位置,;②對滿足題意的任意的的位置,,則()A.命題①和命題②都成立 B.命題①和命題②都不成立C.命題①成立,命題②不成立 D.命題①不成立,命題②成立5.函數的圖象大致是()A. B.C. D.6.在等腰直角三角形中,,為的中點,將它沿翻折,使點與點間的距離為,此時四面體的外接球的表面積為().A. B. C. D.7.在正方體中,,分別為,的中點,則異面直線,所成角的余弦值為()A. B. C. D.8.在鈍角中,角所對的邊分別為,為鈍角,若,則的最大值為()A. B. C.1 D.9.已知正四面體外接球的體積為,則這個四面體的表面積為()A. B. C. D.10.已知將函數(,)的圖象向右平移個單位長度后得到函數的圖象,若和的圖象都關于對稱,則下述四個結論:①②③④點為函數的一個對稱中心其中所有正確結論的編號是()A.①②③ B.①③④ C.①②④ D.②③④11.如圖所示,矩形的對角線相交于點,為的中點,若,則等于().A. B. C. D.12.如圖,長方體中,,,點T在棱上,若平面.則()A.1 B. C.2 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知數列的前項和為,且滿足,則______14.若,則__________.15.在平行四邊形中,已知,,,若,,則____________.16.某中學舉行了一次消防知識競賽,將參賽學生的成績進行整理后分為5組,繪制如圖所示的頻率分布直方圖,記圖中從左到右依次為第一、第二、第三、第四、第五組,已知第二組的頻數是80,則成績在區間的學生人數是__________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖所示,在三棱錐中,,,,點為中點.(1)求證:平面平面;(2)若點為中點,求平面與平面所成銳二面角的余弦值.18.(12分)如圖,在三棱柱中,平面,,且.(1)求棱與所成的角的大小;(2)在棱上確定一點,使二面角的平面角的余弦值為.19.(12分)已知函數,.(Ⅰ)求的最小正周期;(Ⅱ)求在上的最小值和最大值.20.(12分)某學生為了測試煤氣灶燒水如何節省煤氣的問題設計了一個實驗,并獲得了煤氣開關旋鈕旋轉的弧度數與燒開一壺水所用時間的一組數據,且作了一定的數據處理(如下表),得到了散點圖(如下圖).表中,.(1)根據散點圖判斷,與哪一個更適宜作燒水時間關于開關旋鈕旋轉的弧度數的回歸方程類型?(不必說明理由)(2)根據判斷結果和表中數據,建立關于的回歸方程;(3)若單位時間內煤氣輸出量與旋轉的弧度數成正比,那么,利用第(2)問求得的回歸方程知為多少時,燒開一壺水最省煤氣?附:對于一組數據,其回歸直線的斜率和截距的最小二乘法估計值分別為,21.(12分)已知數列,,數列滿足,n.(1)若,,求數列的前2n項和;(2)若數列為等差數列,且對任意n,恒成立.①當數列為等差數列時,求證:數列,的公差相等;②數列能否為等比數列?若能,請寫出所有滿足條件的數列;若不能,請說明理由.22.(10分)已知函數.(1)若在處導數相等,證明:;(2)若對于任意,直線與曲線都有唯一公共點,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.A【解析】

計算,得到答案.【詳解】根據題意,故,表示的復數在第一象限.故選:.【點睛】本題考查了復數的計算,意在考查學生的計算能力和理解能力.2.A【解析】

計算,代入回歸方程可得.【詳解】由題意,,∴,解得.故選:A.【點睛】本題考查線性回歸直線方程,解題關鍵是掌握性質:線性回歸直線一定過中心點.3.A【解析】

根據或,驗證交集后求得的值.【詳解】因為,所以或.當時,,不符合題意,當時,.故選A.【點睛】本小題主要考查集合的交集概念及運算,屬于基礎題.4.A【解析】

作出二面角的補角、線面角、線線角的補角,由此判斷出兩個命題的正確性.【詳解】①如圖所示,過作平面,垂足為,連接,作,連接.由圖可知,,所以,所以①正確.②由于,所以與所成角,所以,所以②正確.綜上所述,①②都正確.故選:A【點睛】本題考查了折疊問題、空間角、數形結合方法,考查了推理能力與計算能力,屬于中檔題.5.A【解析】

根據復合函數的單調性,同增異減以及采用排除法,可得結果.【詳解】當時,,由在遞增,所以在遞增又是增函數,所以在遞增,故排除B、C當時,若,則所以在遞減,而是增函數所以在遞減,所以A正確,D錯誤故選:A【點睛】本題考查具體函數的大致圖象的判斷,關鍵在于對復合函數單調性的理解,記住常用的結論:增+增=增,增-減=增,減+減=減,復合函數單調性同增異減,屬中檔題.6.D【解析】

如圖,將四面體放到直三棱柱中,求四面體的外接球的半徑轉化為求三棱柱外接球的半徑,然后確定球心在上下底面外接圓圓心連線中點,這樣根據幾何關系,求外接球的半徑.【詳解】中,易知,翻折后,,,設外接圓的半徑為,,,如圖:易得平面,將四面體放到直三棱柱中,則球心在上下底面外接圓圓心連線中點,設幾何體外接球的半徑為,,四面體的外接球的表面積為.故選:D【點睛】本題考查幾何體的外接球的表面積,意在考查空間想象能力,和計算能力,屬于中檔題型,求幾何體的外接球的半徑時,一般可以用補形法,因正方體,長方體的外接球半徑容易求,可以將一些特殊的幾何體補形為正方體或長方體,比如三條側棱兩兩垂直的三棱錐,或是構造直角三角形法,確定球心的位置,構造關于外接球半徑的方程求解.7.D【解析】

連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,取的中點為,連接,在等腰中,求出,在利用二倍角公式,求出,即可得出答案.【詳解】連接,,因為,所以為異面直線與所成的角(或補角),不妨設正方體的棱長為2,則,,在等腰中,取的中點為,連接,則,,所以,即:,所以異面直線,所成角的余弦值為.故選:D.【點睛】本題考查空間異面直線的夾角余弦值,利用了正方體的性質和二倍角公式,還考查空間思維和計算能力.8.B【解析】

首先由正弦定理將邊化角可得,即可得到,再求出,最后根據求出的最大值;【詳解】解:因為,所以因為所以,即,,時故選:【點睛】本題考查正弦定理的應用,余弦函數的性質的應用,屬于中檔題.9.B【解析】

設正四面體ABCD的外接球的半徑R,將該正四面體放入一個正方體內,使得每條棱恰好為正方體的面對角線,根據正方體和正四面體的外接球為同一個球計算出正方體的棱長,從而得出正四面體的棱長,最后可求出正四面體的表面積.【詳解】將正四面體ABCD放在一個正方體內,設正方體的棱長為a,如圖所示,設正四面體ABCD的外接球的半徑為R,則,得.因為正四面體ABCD的外接球和正方體的外接球是同一個球,則有,∴.而正四面體ABCD的每條棱長均為正方體的面對角線長,所以,正四面體ABCD的棱長為,因此,這個正四面體的表面積為.故選:B.【點睛】本題考查球的內接多面體,解決這類問題就是找出合適的模型將球體的半徑與幾何體的一些幾何量聯系起來,考查計算能力,屬于中檔題.10.B【解析】

首先根據三角函數的平移規則表示出,再根據對稱性求出、,即可求出的解析式,從而驗證可得;【詳解】解:由題意可得,又∵和的圖象都關于對稱,∴,∴解得,即,又∵,∴,,∴,∴,,∴①③④正確,②錯誤.故選:B【點睛】本題考查三角函數的性質的應用,三角函數的變換規則,屬于基礎題.11.A【解析】

由平面向量基本定理,化簡得,所以,即可求解,得到答案.【詳解】由平面向量基本定理,化簡,所以,即,故選A.【點睛】本題主要考查了平面向量基本定理的應用,其中解答熟記平面向量的基本定理,化簡得到是解答的關鍵,著重考查了運算與求解能力,數基礎題.12.D【解析】

根據線面垂直的性質,可知;結合即可證明,進而求得.由線段關系及平面向量數量積定義即可求得.【詳解】長方體中,,點T在棱上,若平面.則,則,所以,則,所以,故選:D.【點睛】本題考查了直線與平面垂直的性質應用,平面向量數量積的運算,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

對題目所給等式進行賦值,由此求得的表達式,判斷出數列是等比數列,由此求得的值.【詳解】解:,可得時,,時,,又,兩式相減可得,即,上式對也成立,可得數列是首項為1,公比為的等比數列,可得.【點睛】本小題主要考查已知求,考查等比數列前項和公式,屬于中檔題.14.【解析】

因為,由二倍角公式得到,故得到.故答案為.15.【解析】

設,則,得到,,利用向量的數量積的運算,即可求解.【詳解】由題意,如圖所示,設,則,又由,,所以為的中點,為的三等分點,則,,所以.【點睛】本題主要考查了向量的共線定理以及向量的數量積的運算,其中解答中熟記向量的線性運算法則,以及向量的共線定理和向量的數量積的運算公式,準確運算是解答的關鍵,著重考查了推理與運算能力,屬于中檔試題.16.30【解析】

根據頻率直方圖中數據先計算樣本容量,再計算成績在80~100分的頻率,繼而得解.【詳解】根據直方圖知第二組的頻率是,則樣本容量是,又成績在80~100分的頻率是,則成績在區間的學生人數是.故答案為:30【點睛】本題考查了頻率分布直方圖的應用,考查了學生綜合分析,數據處理,數形運算的能力,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1)答案見解析.(2)【解析】

(1)通過證明平面,證得,證得,由此證得平面,進而證得平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出平面與平面所成銳二面角的余弦值.【詳解】(1)因為,所以平面,因為平面,所以.因為,點為中點,所以.因為,所以平面.因為平面,所以平面平面.(2)以點為坐標原點,直線分別為軸,軸,過點與平面垂直的直線為軸,建立空間直角坐標系,則,,,,,,,,,,設平面的一個法向量,則即取,則,,所以,設平面的一個法向量,則即取,則,,所以,設平面與平面所成銳二面角為,則.所以平面與平面所成銳二面角的余弦值為.【點睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.18.(1)(2)【解析】試題分析:(1)因為AB⊥AC,A1B⊥平面ABC,所以以A為坐標原點,分別以AC、AB所在直線分別為x軸和y軸,以過A,且平行于BA1的直線為z軸建立空間直角坐標系,由AB=AC=A1B=2求出所要用到的點的坐標,求出棱AA1與BC上的兩個向量,由向量的夾角求棱AA1與BC所成的角的大小;

(2)設棱B1C1上的一點P,由向量共線得到P點的坐標,然后求出兩個平面PAB與平面ABA1的一個法向量,把二面角P-AB-A1的平面角的余弦值為,轉化為它們法向量所成角的余弦值,由此確定出P點的坐標.試題解析:解(1)如圖,以為原點建立空間直角坐標系,則,.,故與棱所成的角是.(2)為棱中點,設,則.設平面的法向量為,,則,故而平面的法向量是,則,解得,即為棱中點,其坐標為.點睛:本題主要考查線面垂直的判定與性質,以及利用空間向量求二面角.空間向量解答立體幾何問題的一般步驟是:(1)觀察圖形,建立恰當的空間直角坐標系;(2)寫出相應點的坐標,求出相應直線的方向向量;(3)設出相應平面的法向量,利用兩直線垂直數量積為零列出方程組求出法向量;(4)將空間位置關系轉化為向量關系;(5)根據定理結論求出相應的角和距離.19.(Ⅰ);(Ⅱ)最小值和最大值.【解析】試題分析:(1)由已知利用兩角和與差的三角函數公式及倍角公式將的解析式化為一個復合角的三角函數式,再利用正弦型函數的最小正周期計算公式,即可求得函數的最小正周期;(2)由(1)得函數,分析它在閉區間上的單調性,可知函數在區間上是減函數,在區間上是增函數,由此即可求得函數在閉區間上的最大值和最小值.也可以利用整體思想求函數在閉區間上的最大值和最小值.由已知,有的最小正周期.(2)∵在區間上是減函數,在區間上是增函數,,,∴函數在閉區間上的最大值為,最小值為.考點:1.兩角和與差的正弦公式、二倍角的正弦與余弦公式;2.三角函數的周期性和單調性.20.(1)選取更合適;(2);(3)時,煤氣用量最小.【解析】

(1)根據散點圖的特點,可得更適合;(2)先建立關于的回歸方程,再得出關于的回歸方程;(3)寫出函數關系,利用基本不等式得出最小值及其成立的條件.【詳解】(1)選取更適宜作燒水時間關于開關旋鈕旋轉的弧度數的回歸方程類型;(2)由公式可得:,,所以所求回歸直線方程為:;(3)根據題意,設,則煤氣用量,當且僅當時,等號成立,即時,煤氣用量最小.【點睛】此題考查根據題意求回歸方程,利用線性回歸方程的求法得解,結合基本不等式求最值.21.(1)(2)①見解析②數列不能為等比數列,見解析【解析】

(1)根據數列通項公式的特點,奇數項為等差數列,偶數項為等比數列,選用分組求和的方法進行求解;(2)①設數列的公差為,數列的公差為,當n為奇數時,得出;當n為偶數時,得出,從而可證數列,的公差相等;②利用反證法,先假設可以為等比數列,結合題意得出

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論