




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
阜新市重點中學2025屆高三下學期聯合考試數學試題注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號?;卮鸱沁x擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.在平面直角坐標系中,已知是圓上兩個動點,且滿足,設到直線的距離之和的最大值為,若數列的前項和恒成立,則實數的取值范圍是()A. B. C. D.2.已知等比數列滿足,,等差數列中,為數列的前項和,則()A.36 B.72 C. D.3.“”是“函數(為常數)為冪函數”的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分又不必要條件4.已知集合,,則()A. B.C. D.5.已知向量與向量平行,,且,則()A. B.C. D.6.函數在上的大致圖象是()A. B.C. D.7.若函數為自然對數的底數)在區間上不是單調函數,則實數的取值范圍是()A. B. C. D.8.設,則()A. B. C. D.9.已知橢圓的焦點分別為,,其中焦點與拋物線的焦點重合,且橢圓與拋物線的兩個交點連線正好過點,則橢圓的離心率為()A. B. C. D.10.已知甲盒子中有個紅球,個藍球,乙盒子中有個紅球,個藍球,同時從甲乙兩個盒子中取出個球進行交換,(a)交換后,從甲盒子中取1個球是紅球的概率記為.(b)交換后,乙盒子中含有紅球的個數記為.則()A. B.C. D.11.已知集合,集合,則()A. B. C. D.12.《九章算術》中記載,塹堵是底面為直角三角形的直三棱柱,陽馬指底面為矩形,一側棱垂直于底面的四棱錐.如圖,在塹堵中,,,當陽馬體積的最大值為時,塹堵的外接球的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.在中,角,,的對邊分別為,,.若;且,則周長的范圍為__________.14.某班星期一共八節課(上午、下午各四節,其中下午最后兩節為社團活動),排課要求為:語文、數學、外語、物理、化學各排一節,從生物、歷史、地理、政治四科中選排一節.若數學必須安排在上午且與外語不相鄰(上午第四節和下午第一節不算相鄰),則不同的排法有__________種.15.設實數x,y滿足,則點表示的區域面積為______.16.一個空間幾何體的三視圖及部分數據如圖所示,則這個幾何體的體積是___________三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖中,為的中點,,,.(1)求邊的長;(2)點在邊上,若是的角平分線,求的面積.18.(12分)已知各項均為正數的數列的前項和為,且是與的等差中項.(1)證明:為等差數列,并求;(2)設,數列的前項和為,求滿足的最小正整數的值.19.(12分)已知函數.(1)若對任意x0,f(x)0恒成立,求實數a的取值范圍;(2)若函數f(x)有兩個不同的零點x1,x2(x1x2),證明:.20.(12分)如圖,已知在三棱臺中,,,.(1)求證:;(2)過的平面分別交,于點,,且分割三棱臺所得兩部分幾何體的體積比為,幾何體為棱柱,求的長.提示:臺體的體積公式(,分別為棱臺的上、下底面面積,為棱臺的高).21.(12分)已知直線與橢圓恰有一個公共點,與圓相交于兩點.(I)求與的關系式;(II)點與點關于坐標原點對稱.若當時,的面積取到最大值,求橢圓的離心率.22.(10分)為了整頓道路交通秩序,某地考慮將對行人闖紅燈進行處罰.為了更好地了解市民的態度,在普通行人中隨機選取了200人進行調查,當不處罰時,有80人會闖紅燈,處罰時,得到如表數據:處罰金額(單位:元)5101520會闖紅燈的人數50402010若用表中數據所得頻率代替概率.(1)當罰金定為10元時,行人闖紅燈的概率會比不進行處罰降低多少?(2)將選取的200人中會闖紅燈的市民分為兩類:類市民在罰金不超過10元時就會改正行為;類是其他市民.現對類與類市民按分層抽樣的方法抽取4人依次進行深度問卷,則前兩位均為類市民的概率是多少?
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】
由于到直線的距離和等于中點到此直線距離的二倍,所以只需求中點到此直線距離的最大值即可。再得到中點的軌跡是圓,再通過此圓的圓心到直線距離,半徑和中點到此直線距離的最大值的關系可以求出。再通過裂項的方法求的前項和,即可通過不等式來求解的取值范圍.【詳解】由,得,.設線段的中點,則,在圓上,到直線的距離之和等于點到該直線的距離的兩倍,點到直線距離的最大值為圓心到直線的距離與圓的半徑之和,而圓的圓心到直線的距離為,,,..故選:【點睛】本題考查了向量數量積,點到直線的距離,數列求和等知識,是一道不錯的綜合題.2、A【解析】
根據是與的等比中項,可求得,再利用等差數列求和公式即可得到.【詳解】等比數列滿足,,所以,又,所以,由等差數列的性質可得.故選:A【點睛】本題主要考查的是等比數列的性質,考查等差數列的求和公式,考查學生的計算能力,是中檔題.3、A【解析】
根據冪函數定義,求得的值,結合充分條件與必要條件的概念即可判斷.【詳解】∵當函數為冪函數時,,解得或,∴“”是“函數為冪函數”的充分不必要條件.故選:A.【點睛】本題考查了充分必要條件的概念和判斷,冪函數定義的應用,屬于基礎題.4、C【解析】
求出集合,計算出和,即可得出結論.【詳解】,,,.故選:C.【點睛】本題考查交集和并集的計算,考查計算能力,屬于基礎題.5、B【解析】
設,根據題意得出關于、的方程組,解出這兩個未知數的值,即可得出向量的坐標.【詳解】設,且,,由得,即,①,由,②,所以,解得,因此,.故選:B.【點睛】本題考查向量坐標的求解,涉及共線向量的坐標表示和向量數量積的坐標運算,考查計算能力,屬于中等題.6、D【解析】
討論的取值范圍,然后對函數進行求導,利用導數的幾何意義即可判斷.【詳解】當時,,則,所以函數在上單調遞增,令,則,根據三角函數的性質,當時,,故切線的斜率變小,當時,,故切線的斜率變大,可排除A、B;當時,,則,所以函數在上單調遞增,令,,當時,,故切線的斜率變大,當時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數的圖像,考查了導數與函數單調性的關系以及導數的幾何意義,屬于中檔題.7、B【解析】
求得的導函數,由此構造函數,根據題意可知在上有變號零點.由此令,利用分離常數法結合換元法,求得的取值范圍.【詳解】,設,要使在區間上不是單調函數,即在上有變號零點,令,則,令,則問題即在上有零點,由于在上遞增,所以的取值范圍是.故選:B【點睛】本小題主要考查利用導數研究函數的單調性,考查方程零點問題的求解策略,考查化歸與轉化的數學思想方法,屬于中檔題.8、C【解析】試題分析:,.故C正確.考點:復合函數求值.9、B【解析】
根據題意可得易知,且,解方程可得,再利用即可求解.【詳解】易知,且故有,則故選:B【點睛】本題考查了橢圓的幾何性質、拋物線的幾何性質,考查了學生的計算能力,屬于中檔題10、A【解析】分析:首先需要去分析交換后甲盒中的紅球的個數,對應的事件有哪些結果,從而得到對應的概率的大小,再者就是對隨機變量的值要分清,對應的概率要算對,利用公式求得其期望.詳解:根據題意有,如果交換一個球,有交換的都是紅球、交換的都是藍球、甲盒的紅球換的乙盒的藍球、甲盒的藍球交換的乙盒的紅球,紅球的個數就會出現三種情況;如果交換的是兩個球,有紅球換紅球、藍球換藍球、一藍一紅換一藍一紅、紅換藍、藍換紅、一藍一紅換兩紅、一藍一紅換亮藍,對應的紅球的個數就是五種情況,所以分析可以求得,故選A.點睛:該題考查的是有關隨機事件的概率以及對應的期望的問題,在解題的過程中,需要對其對應的事件弄明白,對應的概率會算,以及變量的可取值會分析是多少,利用期望公式求得結果.11、D【解析】
可求出集合,,然后進行并集的運算即可.【詳解】解:,;.故選.【點睛】考查描述法、區間的定義,對數函數的單調性,以及并集的運算.12、B【解析】
利用均值不等式可得,即可求得,進而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當且僅當時等號成立,又陽馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點睛】本題以中國傳統文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應用,體現了數學運算、直觀想象等核心素養.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
先求角,再用余弦定理找到邊的關系,再用基本不等式求的范圍即可.【詳解】解:所以三角形周長故答案為:【點睛】考查正余弦定理、基本不等式的應用以及三條線段構成三角形的條件;基礎題.14、1344【解析】
分四種情況討論即可【詳解】解:數學排在第一節時有:數學排在第二節時有:數學排在第三節時有:數學排在第四節時有:所以共有1344種故答案為:1344【點睛】考查排列、組合的應用,注意分類討論,做到不重不漏;基礎題.15、【解析】
先畫出滿足條件的平面區域,求出交點坐標,利用定積分即可求解.【詳解】畫出實數x,y滿足表示的平面區域,如圖(陰影部分):則陰影部分的面積,故答案為:【點睛】本題考查了定積分求曲邊梯形的面積,考查了微積分基本定理,屬于基礎題.16、【解析】
先還原幾何體,再根據柱體體積公式求解【詳解】空間幾何體為一個棱柱,如圖,底面為邊長為的直角三角形,高為的棱柱,所以體積為【點睛】本題考查三視圖以及柱體體積公式,考查基本分析求解能力,屬基礎題三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)10;(2).【解析】
(1)由題意可得cos∠ADB=﹣cos∠ADC,由已知利用余弦定理可得:9+BD2﹣52+9+BD2﹣16=0,進而解得BC的值.(2)由(1)可知△ADC為直角三角形,可求S△ADC6,S△ABC=2S△ADC=12,利用角平分線的性質可得,根據S△ABC=S△BCE+S△ACE可求S△BCE的值.【詳解】(1)因為在邊上,所以,在和中由余弦定理,得,因為,,,,所以,所以,.所以邊的長為10.(2)由(1)知為直角三角形,所以,.因為是的角平分線,所以.所以,所以.即的面積為.【點睛】本題主要考查了余弦定理,三角形的面積公式,角平分線的性質在解三角形中的綜合應用,考查了轉化思想和數形結合思想,屬于中檔題.18、(1)見解析,(2)最小正整數的值為35.【解析】
(1)由等差中項可知,當時,得,整理后可得,從而證明為等差數列,繼而可求.(2),則可求出,令,即可求出的取值范圍,進而求出最小值.【詳解】解析:(1)由題意可得,當時,,∴,,當時,,整理可得,∴是首項為1,公差為1的等差數列,∴,.(2)由(1)可得,∴,解得,∴最小正整數的值為35.【點睛】本題考查了等差中項,考查了等差數列的定義,考查了與的關系,考查了裂項相消求和.當已知有與的遞推關系時,常代入進行整理.證明數列是等差數列時,一般借助數列,即后一項與前一項的差為常數.19、(1);(2)證明見解析.【解析】
(1)求出,判斷函數的單調性,求出函數的最大值,即求的范圍;(2)由(1)可知,.對分和兩種情況討論,構造函數,利用放縮法和基本不等式證明結論.【詳解】(1)由,得.令.當時,;當時,;在上單調遞增,在上單調遞減,.對任意恒成立,.(2)證明:由(1)可知,在上單調遞增,在上單調遞減,.若,則,令在上單調遞增,,.又,在上單調遞減,.若,則顯然成立.綜上,.又以上兩式左右兩端分別相加,得,即,所以.【點睛】本題考查利用導數解決不等式恒成立問題,利用導數證明不等式,屬于難題.20、(1)證明見解析;(2)2【解析】
(1)在中,利用勾股定理,證得,又由題設條件,得到,利用線面垂直的判定定理,證得平面,進而得到;(2)設三棱臺和三棱柱的高都為上、下底面之間的距離為,根據棱臺的體積公式,列出方程求得,得到,即可求解.【詳解】(1)由題意,在中,,,所以,可得,因為,可得.又由,,平面,所以平面,因為平面,所以.(2)因為,可得,令,,設三棱臺和三棱柱的高都為上、下底面之間的距離為,則,整理得,即,解得,即,又由,所以.【點睛】本題主要考查了直線與平面垂直的判定與應用,以及幾何體的體積公式的應用,其中解答中熟記線面位置關系的判定定理與性質定理,以及熟練應用幾何體的體積公式進行求解是解答的關鍵,著重考查了推理與計算能力,屬于基礎題.21、(Ⅰ)(II)【解析】
(I)聯立直線與橢圓的方程,根據判別式等于0,即可求出結果;(Ⅱ)因點與點關于坐
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 專注實踐經驗的證券從業資格證考試試題及答案
- 注冊會計師考試內容深度剖析試題及答案
- 船體亮化施工方案怎么寫
- 系統分析師考試全面提高的試題及答案
- 糕點烘焙設備操作與維護考核試卷
- 寵物收養家庭寵物養護與寵物友善交通考核試卷
- 2024年項目管理師考題重點試題及答案
- 科技會展參展商關系維護與管理考核試卷
- 燈具銷售中的價格策略與利潤控制考核試卷
- 纖維板行業發展趨勢預測分析考核試卷
- 《電力設備典型消防規程》知識培訓
- 2025屆浙江省君兮協作聯盟高三下學期4月教學質量檢測英語試題(含解析)
- 注冊會計師(綜合階段)題庫完美版帶答案分析2025
- 四川省成都東部新區龍云學校2024-2025學年五年級下冊半期測試題(含答案)
- 新課標解讀丨《義務教育道德與法治課程標準(2022年版)》解讀
- 兒童支氣管哮喘診斷與防治指南(2025版)解讀課件
- 2024年中國海洋大學招聘輔導員筆試真題
- 倉管員安全培訓課件
- 紅藍黃光治療皮膚病臨床應用專家共識解讀
- 氧氣管道施工方案
- 建筑施工現場突發事件應急預案及要求措施
評論
0/150
提交評論