安徽省亳州市第三十二中學2025屆高三下學期聯合考試數學試題含解析_第1頁
安徽省亳州市第三十二中學2025屆高三下學期聯合考試數學試題含解析_第2頁
安徽省亳州市第三十二中學2025屆高三下學期聯合考試數學試題含解析_第3頁
安徽省亳州市第三十二中學2025屆高三下學期聯合考試數學試題含解析_第4頁
安徽省亳州市第三十二中學2025屆高三下學期聯合考試數學試題含解析_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

安徽省亳州市第三十二中學2025屆高三下學期聯合考試數學試題請考生注意:1.請用2B鉛筆將選擇題答案涂填在答題紙相應位置上,請用0.5毫米及以上黑色字跡的鋼筆或簽字筆將主觀題的答案寫在答題紙相應的答題區內。寫在試題卷、草稿紙上均無效。2.答題前,認真閱讀答題紙上的《注意事項》,按規定答題。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數且,則實數的取值范圍是()A. B. C. D.2.設i是虛數單位,若復數是純虛數,則a的值為()A. B.3 C.1 D.3.已知定義在上的函數在區間上單調遞增,且的圖象關于對稱,若實數滿足,則的取值范圍是()A. B. C. D.4.已知函數,,若,對任意恒有,在區間上有且只有一個使,則的最大值為()A. B. C. D.5.如圖,正三棱柱各條棱的長度均相等,為的中點,分別是線段和線段的動點(含端點),且滿足,當運動時,下列結論中不正確的是A.在內總存在與平面平行的線段B.平面平面C.三棱錐的體積為定值D.可能為直角三角形6.已知雙曲線的兩條漸近線與拋物線的準線分別交于點、,O為坐標原點.若雙曲線的離心率為2,三角形AOB的面積為,則p=().A.1 B. C.2 D.37.已知函數有兩個不同的極值點,,若不等式有解,則的取值范圍是()A. B.C. D.8.已知,是函數圖像上不同的兩點,若曲線在點,處的切線重合,則實數的最小值是()A. B. C. D.19.設是虛數單位,復數()A. B. C. D.10.正三棱柱中,,是的中點,則異面直線與所成的角為()A. B. C. D.11.已知集合,,若,則()A.或 B.或 C.或 D.或12.記等差數列的公差為,前項和為.若,,則()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.若,則的最小值為________.14.某大學、、、四個不同的專業人數占本校總人數的比例依次為、、、,現欲采用分層抽樣的方法從這四個專業的總人數中抽取人調查畢業后的就業情況,則專業應抽取_________人.15.的二項展開式中,含項的系數為__________.16.展開式中的系數為_________.(用數字做答)三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知雙曲線及直線.(1)若l與C有兩個不同的交點,求實數k的取值范圍;(2)若l與C交于A,B兩點,O是原點,且,求實數k的值.18.(12分)記為數列的前項和,N.(1)求;(2)令,證明數列是等比數列,并求其前項和.19.(12分)如圖所示,在三棱錐中,,,,點為中點.(1)求證:平面平面;(2)若點為中點,求平面與平面所成銳二面角的余弦值.20.(12分)如圖,在直三棱柱中,,點P,Q分別為,的中點.求證:(1)PQ平面;(2)平面.21.(12分)已知函數.(1)若函數在上單調遞減,求實數的取值范圍;(2)若,求的最大值.22.(10分)設函數.(1)若恒成立,求整數的最大值;(2)求證:.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、B【解析】

構造函數,判斷出的單調性和奇偶性,由此求得不等式的解集.【詳解】構造函數,由解得,所以的定義域為,且,所以為奇函數,而,所以在定義域上為增函數,且.由得,即,所以.故選:B【點睛】本小題主要考查利用函數的單調性和奇偶性解不等式,屬于中檔題.2、D【解析】

整理復數為的形式,由復數為純虛數可知實部為0,虛部不為0,即可求解.【詳解】由題,,因為純虛數,所以,則,故選:D【點睛】本題考查已知復數的類型求參數范圍,考查復數的除法運算.3、C【解析】

根據題意,由函數的圖象變換分析可得函數為偶函數,又由函數在區間上單調遞增,分析可得,解可得的取值范圍,即可得答案.【詳解】將函數的圖象向左平移個單位長度可得函數的圖象,由于函數的圖象關于直線對稱,則函數的圖象關于軸對稱,即函數為偶函數,由,得,函數在區間上單調遞增,則,得,解得.因此,實數的取值范圍是.故選:C.【點睛】本題考查利用函數的單調性與奇偶性解不等式,注意分析函數的奇偶性,屬于中等題.4、C【解析】

根據的零點和最值點列方程組,求得的表達式(用表示),根據在上有且只有一個最大值,求得的取值范圍,求得對應的取值范圍,由為整數對的取值進行驗證,由此求得的最大值.【詳解】由題意知,則其中,.又在上有且只有一個最大值,所以,得,即,所以,又,因此.①當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;②當時,,此時取可使成立,當時,,所以當或時,都成立,舍去;③當時,,此時取可使成立,當時,,所以當時,成立;綜上所得的最大值為.故選:C【點睛】本小題主要考查三角函數的零點和最值,考查三角函數的性質,考查化歸與轉化的數學思想方法,考查分類討論的數學思想方法,屬于中檔題.5、D【解析】

A項用平行于平面ABC的平面與平面MDN相交,則交線與平面ABC平行;B項利用線面垂直的判定定理;C項三棱錐與三棱錐體積相等,三棱錐的底面積是定值,高也是定值,則體積是定值;D項用反證法說明三角形DMN不可能是直角三角形.【詳解】A項,用平行于平面ABC的平面截平面MND,則交線平行于平面ABC,故正確;B項,如圖:當M、N分別在BB1、CC1上運動時,若滿足BM=CN,則線段MN必過正方形BCC1B1的中心O,由DO垂直于平面BCC1B1可得平面平面,故正確;C項,當M、N分別在BB1、CC1上運動時,△A1DM的面積不變,N到平面A1DM的距離不變,所以棱錐N-A1DM的體積不變,即三棱錐A1-DMN的體積為定值,故正確;D項,若△DMN為直角三角形,則必是以∠MDN為直角的直角三角形,但MN的最大值為BC1,而此時DM,DN的長大于BB1,所以△DMN不可能為直角三角形,故錯誤.故選D【點睛】本題考查了命題真假判斷、棱柱的結構特征、空間想象力和思維能力,意在考查對線面、面面平行、垂直的判定和性質的應用,是中檔題.6、C【解析】試題分析:拋物線的準線為,雙曲線的離心率為2,則,,漸近線方程為,求出交點,,,則;選C考點:1.雙曲線的漸近線和離心率;2.拋物線的準線方程;7、C【解析】

先求導得(),由于函數有兩個不同的極值點,,轉化為方程有兩個不相等的正實數根,根據,,,求出的取值范圍,而有解,通過分裂參數法和構造新函數,通過利用導數研究單調性、最值,即可得出的取值范圍.【詳解】由題可得:(),因為函數有兩個不同的極值點,,所以方程有兩個不相等的正實數根,于是有解得.若不等式有解,所以因為.設,,故在上單調遞增,故,所以,所以的取值范圍是.故選:C.【點睛】本題考查利用導數研究函數單調性、最值來求參數取值范圍,以及運用分離參數法和構造函數法,還考查分析和計算能力,有一定的難度.8、B【解析】

先根據導數的幾何意義寫出在兩點處的切線方程,再利用兩直線斜率相等且縱截距相等,列出關系樹,從而得出,令函數,結合導數求出最小值,即可選出正確答案.【詳解】解:當時,,則;當時,則.設為函數圖像上的兩點,當或時,,不符合題意,故.則在處的切線方程為;在處的切線方程為.由兩切線重合可知,整理得.不妨設則,由可得則當時,的最大值為.則在上單調遞減,則.故選:B.【點睛】本題考查了導數的幾何意義,考查了推理論證能力,考查了函數與方程、分類與整合、轉化與化歸等思想方法.本題的難點是求出和的函數關系式.本題的易錯點是計算.9、D【解析】

利用復數的除法運算,化簡復數,即可求解,得到答案.【詳解】由題意,復數,故選D.【點睛】本題主要考查了復數的除法運算,其中解答中熟記復數的除法運算法則是解答的關鍵,著重考查了運算與求解能力,屬于基礎題.10、C【解析】

取中點,連接,,根據正棱柱的結構性質,得出//,則即為異面直線與所成角,求出,即可得出結果.【詳解】解:如圖,取中點,連接,,由于正三棱柱,則底面,而底面,所以,由正三棱柱的性質可知,為等邊三角形,所以,且,所以平面,而平面,則,則//,,∴即為異面直線與所成角,設,則,,,則,∴.故選:C.【點睛】本題考查通過幾何法求異面直線的夾角,考查計算能力.11、B【解析】

因為,所以,所以或.若,則,滿足.若,解得或.若,則,滿足.若,顯然不成立,綜上或,選B.12、C【解析】

由,和,可求得,從而求得和,再驗證選項.【詳解】因為,,所以解得,所以,所以,,,故選:C.【點睛】本題考查等差數列的通項公式、前項和公式,還考查運算求解能力,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

由基本不等式,可得到,然后利用,可得到最小值,要注意等號取得的條件。【詳解】由題意,,當且僅當時等號成立,所以,當且僅當時取等號,所以當時,取得最小值.【點睛】利用基本不等式求最值必須具備三個條件:①各項都是正數;②和(或積)為定值;③等號取得的條件。14、【解析】

求出專業人數在、、、四個專業總人數的比例后可得.【詳解】由題意、、、四個不同的專業人數的比例為,故專業應抽取的人數為.故答案為:1.【點睛】本題考查分層抽樣,根據分層抽樣的定義,在各層抽取樣本數量是按比例抽取的.15、【解析】

寫出二項展開式的通項,然后取的指數為求得的值,則項的系數可求得.【詳解】,由,可得.含項的系數為.故答案為:【點睛】本題考查了二項式定理展開式、需熟記二項式展開式的通項公式,屬于基礎題.16、210【解析】

轉化,只有中含有,即得解.【詳解】只有中含有,其中的系數為故答案為:210【點睛】本題考查了二項式系數的求解,考查了學生概念理解,轉化劃歸,數學運算的能力,屬于中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)或.【解析】

(1)聯立直線方程與雙曲線方程,消去,得到關于的一元二次方程,根據根的判別式,即可求出結論;(2)設,由(1)可得關系,再由直線l過點,可得,進而建立關于的方程,求解即可.【詳解】(1)雙曲線C與直線l有兩個不同的交點,則方程組有兩個不同的實數根,整理得,,解得且.雙曲線C與直線l有兩個不同交點時,k的取值范圍是.(2)設交點,直線l與y軸交于點,,.,即,整理得,解得或或.又,或時,的面積為.【點睛】本題考查直線與雙曲線的位置關系、三角形面積計算,要熟練掌握根與系數關系解決相交弦問題,考查計算求解能力,屬于中檔題.18、(1);(2)證明見詳解,【解析】

(1)根據,可得,然后作差,可得結果.(2)根據(1)的結論,用取代,得到新的式子,然后作差,可得結果,最后根據等比數列的前項和公式,可得結果.【詳解】(1)由①,則②②-①可得:所以(2)由(1)可知:③則④④-③可得:則,且令,則,所以數列是首項為,公比為的等比數列所以【點睛】本題主要考查遞推公式以及之間的關系的應用,考驗觀察能力以及分析能力,屬中檔題.19、(1)答案見解析.(2)【解析】

(1)通過證明平面,證得,證得,由此證得平面,進而證得平面平面.(2)建立空間直角坐標系,利用平面和平面的法向量,計算出平面與平面所成銳二面角的余弦值.【詳解】(1)因為,所以平面,因為平面,所以.因為,點為中點,所以.因為,所以平面.因為平面,所以平面平面.(2)以點為坐標原點,直線分別為軸,軸,過點與平面垂直的直線為軸,建立空間直角坐標系,則,,,,,,,,,,設平面的一個法向量,則即取,則,,所以,設平面的一個法向量,則即取,則,,所以,設平面與平面所成銳二面角為,則.所以平面與平面所成銳二面角的余弦值為.【點睛】本小題主要考查面面垂直的證明,考查二面角的求法,考查空間想象能力和邏輯推理能力,屬于中檔題.20、(1)見解析(2)見解析【解析】

(1)取的中點D,連結,.根據線面平行的判定定理即得;(2)先證,,和都是平面內的直線且交于點,由(1)得,再結合線面垂直的判定定理即得.【詳解】(1)取的中點D,連結,.在中,P,D分別為,中點,,且.在直三棱柱中,,.Q為棱的中點,,且.,.四邊形為平行四邊形,從而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D為中點,.由(1)知,,.又,平面,平面,平面.【點睛】本題考查線面平行的判定定理,以及線面垂直的判定定理,難度不大.21、(1)(2)【解析】

(1)根據單調遞減可知導函數恒小于等于,采用參變分離的方法分離出,并將的部分構造成新函數,分析與最值之間的關系;(2)通過對的導函數分析,確定有唯一零點,則就是的極大值點也是最大值點,計算的值并利用進行化簡,從而確定.【詳解】(1)由題意知,在上恒成立,所以在上恒成立.令,則,所以在上單調遞增,所以,所以.(2)當時,.則,令,則,所以在上單調遞減.由于,,所以存在滿足,即.當時,,;當時,,.所以在上單調遞增,在上單調遞減.所以,因為,所以,所以,所以.【點睛】(1)求函數中字母的范圍時,常用的方法有兩種:參變分離法、分類討論法;(2)當導函數不易求零點時,需要將導函數中某些部分拿出作單獨分析,以便先確定導函數的單調性從而確定導函數的零點所在區間,再分析整個函數的單調性,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論