2025屆山東省章丘市高三(最后沖刺)數學試卷含解析_第1頁
2025屆山東省章丘市高三(最后沖刺)數學試卷含解析_第2頁
2025屆山東省章丘市高三(最后沖刺)數學試卷含解析_第3頁
2025屆山東省章丘市高三(最后沖刺)數學試卷含解析_第4頁
2025屆山東省章丘市高三(最后沖刺)數學試卷含解析_第5頁
已閱讀5頁,還剩13頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆山東省章丘市高三(最后沖刺)數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知雙曲線:(,)的右焦點與圓:的圓心重合,且圓被雙曲線的一條漸近線截得的弦長為,則雙曲線的離心率為()A.2 B. C. D.32.已知隨機變量服從正態分布,,()A. B. C. D.3.設正項等比數列的前n項和為,若,,則公比()A. B.4 C. D.24.若非零實數、滿足,則下列式子一定正確的是()A. B.C. D.5.已知角的終邊經過點,則的值是A.1或 B.或 C.1或 D.或6.在原點附近的部分圖象大概是()A. B.C. D.7.已知正方體的棱長為,,,分別是棱,,的中點,給出下列四個命題:①;②直線與直線所成角為;③過,,三點的平面截該正方體所得的截面為六邊形;④三棱錐的體積為.其中,正確命題的個數為()A. B. C. D.8.若,則函數在區間內單調遞增的概率是()A.B.C.D.9.“紋樣”是中國藝術寶庫的瑰寶,“火紋”是常見的一種傳統紋樣.為了測算某火紋紋樣(如圖陰影部分所示)的面積,作一個邊長為3的正方形將其包含在內,并向該正方形內隨機投擲200個點,己知恰有80個點落在陰影部分據此可估計陰影部分的面積是()A. B. C.10 D.10.執行下面的程序框圖,若輸出的的值為63,則判斷框中可以填入的關于的判斷條件是()A. B. C. D.11.已知向量,,,若,則()A. B. C. D.12.下列說法正確的是()A.命題“,”的否定形式是“,”B.若平面,,,滿足,則C.隨機變量服從正態分布(),若,則D.設是實數,“”是“”的充分不必要條件二、填空題:本題共4小題,每小題5分,共20分。13.函數的極大值為________.14.平面向量,,(R),且與的夾角等于與的夾角,則.15.在一塊土地上種植某種農作物,連續5年的產量(單位:噸)分別為9.4,9.7,9.8,10.3,10.8.則該農作物的年平均產量是______噸.16.已知函數函數,則不等式的解集為____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,在正四棱柱中,已知,.(1)求異面直線與直線所成的角的大小;(2)求點到平面的距離.18.(12分)已知.(Ⅰ)若,求不等式的解集;(Ⅱ),,,求實數的取值范圍.19.(12分)已知數列的各項都為正數,,且.(Ⅰ)求數列的通項公式;(Ⅱ)設,其中表示不超過x的最大整數,如,,求數列的前2020項和.20.(12分)如圖,三棱錐中,點,分別為,的中點,且平面平面.求證:平面;若,,求證:平面平面.21.(12分)如圖,在三棱錐中,,是的中點,點在上,平面,平面平面,為銳角三角形,求證:(1)是的中點;(2)平面平面.22.(10分)已知橢圓:的兩個焦點是,,在橢圓上,且,為坐標原點,直線與直線平行,且與橢圓交于,兩點.連接、與軸交于點,.(1)求橢圓的標準方程;(2)求證:為定值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

由已知,圓心M到漸近線的距離為,可得,又,解方程即可.【詳解】由已知,,漸近線方程為,因為圓被雙曲線的一條漸近線截得的弦長為,所以圓心M到漸近線的距離為,故,所以離心率為.故選:A.【點睛】本題考查雙曲線離心率的問題,涉及到直線與圓的位置關系,考查學生的運算能力,是一道容易題.2、B【解析】

利用正態分布密度曲線的對稱性可得出,進而可得出結果.【詳解】,所以,.故選:B.【點睛】本題考查利用正態分布密度曲線的對稱性求概率,屬于基礎題.3、D【解析】

由得,又,兩式相除即可解出.【詳解】解:由得,又,∴,∴,或,又正項等比數列得,∴,故選:D.【點睛】本題主要考查等比數列的性質的應用,屬于基礎題.4、C【解析】

令,則,,將指數式化成對數式得、后,然后取絕對值作差比較可得.【詳解】令,則,,,,,因此,.故選:C.【點睛】本題考查了利用作差法比較大小,同時也考查了指數式與對數式的轉化,考查推理能力,屬于中等題.5、B【解析】

根據三角函數的定義求得后可得結論.【詳解】由題意得點與原點間的距離.①當時,,∴,∴.②當時,,∴,∴.綜上可得的值是或.故選B.【點睛】利用三角函數的定義求一個角的三角函數值時需確定三個量:角的終邊上任意一個異于原點的點的橫坐標x,縱坐標y,該點到原點的距離r,然后再根據三角函數的定義求解即可.6、A【解析】

分析函數的奇偶性,以及該函數在區間上的函數值符號,結合排除法可得出正確選項.【詳解】令,可得,即函數的定義域為,定義域關于原點對稱,,則函數為奇函數,排除C、D選項;當時,,,則,排除B選項.故選:A.【點睛】本題考查利用函數解析式選擇函數圖象,一般要分析函數的定義域、奇偶性、單調性、零點以及函數值符號,考查分析問題和解決問題的能力,屬于中等題.7、C【解析】

畫出幾何體的圖形,然后轉化判斷四個命題的真假即可.【詳解】如圖;連接相關點的線段,為的中點,連接,因為是中點,可知,,可知平面,即可證明,所以①正確;直線與直線所成角就是直線與直線所成角為;正確;過,,三點的平面截該正方體所得的截面為五邊形;如圖:是五邊形.所以③不正確;如圖:三棱錐的體積為:由條件易知F是GM中點,所以,而,.所以三棱錐的體積為,④正確;故選:.【點睛】本題考查命題的真假的判斷與應用,涉及空間幾何體的體積,直線與平面的位置關系的應用,平面的基本性質,是中檔題.8、B【解析】函數在區間內單調遞增,,在恒成立,在恒成立,,函數在區間內單調遞增的概率是,故選B.9、D【解析】

直接根據幾何概型公式計算得到答案.【詳解】根據幾何概型:,故.故選:.【點睛】本題考查了根據幾何概型求面積,意在考查學生的計算能力和應用能力.10、B【解析】

根據程序框圖,逐步執行,直到的值為63,結束循環,即可得出判斷條件.【詳解】執行框圖如下:初始值:,第一步:,此時不能輸出,繼續循環;第二步:,此時不能輸出,繼續循環;第三步:,此時不能輸出,繼續循環;第四步:,此時不能輸出,繼續循環;第五步:,此時不能輸出,繼續循環;第六步:,此時要輸出,結束循環;故,判斷條件為.故選B【點睛】本題主要考查完善程序框圖,只需逐步執行框圖,結合輸出結果,即可確定判斷條件,屬于常考題型.11、A【解析】

根據向量坐標運算求得,由平行關系構造方程可求得結果.【詳解】,,解得:故選:【點睛】本題考查根據向量平行關系求解參數值的問題,涉及到平面向量的坐標運算;關鍵是明確若兩向量平行,則.12、D【解析】

由特稱命題的否定是全稱命題可判斷選項A;可能相交,可判斷B選項;利用正態分布的性質可判斷選項C;或,利用集合間的包含關系可判斷選項D.【詳解】命題“,”的否定形式是“,”,故A錯誤;,,則可能相交,故B錯誤;若,則,所以,故,所以C錯誤;由,得或,故“”是“”的充分不必要條件,D正確.故選:D.【點睛】本題考查命題的真假判斷,涉及到特稱命題的否定、面面相關的命題、正態分布、充分條件與必要條件等,是一道容易題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】

對函數求導,根據函數單調性,即可容易求得函數的極大值.【詳解】依題意,得.所以當時,;當時,.所以當時,函數有極大值.故答案為:.【點睛】本題考查利用導數研究函數的性質,考查運算求解能力以及化歸轉化思想,屬基礎題.14、2【解析】試題分析:,與的夾角等于與的夾角,所以考點:向量的坐標運算與向量夾角15、10【解析】

根據已知數據直接計算即得.【詳解】由題得,.故答案為:10【點睛】本題考查求平均數,是基礎題.16、【解析】,,所以,所以的解集為。點睛:本題考查絕對值不等式。本題先對絕對值函數進行分段處理,再得到的解析式,求得的分段函數解析式,再解不等式即可。絕對值函數一般都去絕對值轉化為分段函數處理。三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2).【解析】

(1)建立空間坐標系,通過求向量與向量的夾角,轉化為異面直線與直線所成的角的大小;(2)先求出面的一個法向量,再用點到面的距離公式算出即可.【詳解】以為原點,所在直線分別為軸建系,設所以,,所以異面直線與直線所成的角的余弦值為,異面直線與直線所成的角的大小為.(2)因為,,設是面的一個法向量,所以有即,令,,故,又,所以點到平面的距離為.【點睛】本題主要考查向量法求異面直線所成角的大小和點到面的距離,意在考查學生的數學建模以及數學運算能力.18、(Ⅰ);(Ⅱ).【解析】

(Ⅰ)利用零點分段討論法把函數改寫成分段函數的形式,分三種情況分別解不等式,然后取并集即可;(Ⅱ)利用絕對值三角不等式求出的最小值,利用均值不等式求出的最小值,結合題意,只需即可,解不等式即可求解.【詳解】(Ⅰ)當時,,,或,或,或所以不等式的解集為;(Ⅱ)因為,又(當時等號成立),依題意,,,有,則,解之得,故實數的取值范圍是.【點睛】本題考查由存在性問題求參數的范圍、零點分段討論法解絕對值不等式、利用絕對值三角不等式和均值不等式求最值;考查運算求解能力、分類討論思想、邏輯推理能力;屬于中檔題.19、(Ⅰ);(Ⅱ)4953【解析】

(Ⅰ)遞推公式變形為,由數列是正項數列,得到,根據數列是等比數列求通項公式;(Ⅱ),根據新定義和對數的運算分類討論數列的通項公式,并求前2020項和.【詳解】(Ⅰ)∵,∴,∴又∵數列的各項都為正數,∴,即.∴數列是以2為首項,2為公比的等比數列,∴.(Ⅱ)∵,∴,.∴數列的前2020項的和為.【點睛】本題考查根據數列的遞推公式求通項公式和數列的前項和,意在考查轉化與化歸的思想,計算能力,屬于中檔題型.20、證明見解析;證明見解析.【解析】

利用線面平行的判定定理求證即可;為中點,為中點,可得,,,可知,故為直角三角形,,利用面面垂直的判定定理求證即可.【詳解】解:證明:為中點,為中點,,又平面,平面,平面;證明:為中點,為中點,,又,,則,故為直角三角形,,平面平面,平面平面,,平面,平面,又∵平面,平面平面.【點睛】本題考查線面平行和面面垂直的判定定理的應用,屬于基礎題.21、(1)證明見解析;(2)證明見解析;【解析】

(1)推導出,由是的中點,能證明是有中點.(2)作于點,推導出平面,從而,由,能證明平面,由此能證明平面平面.【詳解】證明:(1)在三棱錐中,平面,平面平面,平面,,在中,是的中點,是有中點.(2)在三棱錐中,是銳角三角形,在中,可作于點,平面平面,平面平面,平面,平面,平面,,,,平面,平面,平面平面.【點睛】本題考查線段中點的證明,考查面面垂直的證明,考查空間中線線、線面、面面間的位置關系等基礎知識,考查運算求解能力,考查數形結合思想,屬于中檔題.22、(1)(2)證明見解析【解析】

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論