




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
湖北省七市2025屆高三下學期第五次調研考試數學試題注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設,為非零向量,則“存在正數,使得”是“”的()A.既不充分也不必要條件 B.必要不充分條件C.充分必要條件 D.充分不必要條件2.已知向量,,則與共線的單位向量為()A. B.C.或 D.或3.已知拋物線的焦點為,對稱軸與準線的交點為,為上任意一點,若,則()A.30° B.45° C.60° D.75°4.港珠澳大橋于2018年10月2刻日正式通車,它是中國境內一座連接香港、珠海和澳門的橋隧工程,橋隧全長55千米.橋面為雙向六車道高速公路,大橋通行限速100km/h,現對大橋某路段上1000輛汽車的行駛速度進行抽樣調查.畫出頻率分布直方圖(如圖),根據直方圖估計在此路段上汽車行駛速度在區間[85,90)的車輛數和行駛速度超過90km/h的頻率分別為()A.300, B.300, C.60, D.60,5.某三棱錐的三視圖如圖所示,則該三棱錐的體積為()A. B.4C. D.56.已知實數滿足約束條件,則的最小值是A. B. C.1 D.47.已知全集,集合,則()A. B. C. D.8.已知定義在R上的偶函數滿足,當時,,函數(),則函數與函數的圖象的所有交點的橫坐標之和為()A.2 B.4 C.5 D.69.若,則下列不等式不能成立的是()A. B. C. D.10.若數列滿足且,則使的的值為()A. B. C. D.11.已知復數是純虛數,其中是實數,則等于()A. B. C. D.12.若樣本的平均數是10,方差為2,則對于樣本,下列結論正確的是()A.平均數為20,方差為4 B.平均數為11,方差為4C.平均數為21,方差為8 D.平均數為20,方差為8二、填空題:本題共4小題,每小題5分,共20分。13.已知函數,則關于的不等式的解集為_______.14.戊戌年結束,己亥年伊始,小康,小梁,小譚,小楊,小劉,小林六人分成四組,其中兩個組各2人,另兩個組各1人,分別奔赴四所不同的學校參加演講,則不同的分配方案有_________種(用數字作答),15.已知函數與的圖象上存在關于軸對稱的點,則的取值范圍為_____.16.某種牛肉干每袋的質量服從正態分布,質檢部門的檢測數據顯示:該正態分布為,.某旅游團游客共購買這種牛肉干100袋,估計其中質量低于的袋數大約是_____袋.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知函數,.(1)若曲線在點處的切線方程為,求,;(2)當時,,求實數的取值范圍.18.(12分)已知是拋物線:的焦點,點在上,到軸的距離比小1.(1)求的方程;(2)設直線與交于另一點,為的中點,點在軸上,.若,求直線的斜率.19.(12分)設(1)當時,求不等式的解集;(2)若,求的取值范圍.20.(12分)為了打好脫貧攻堅戰,某貧困縣農科院針對玉米種植情況進行調研,力爭有效地改良玉米品種,為農民提供技術支援,現對已選出的一組玉米的莖高進行統計,獲得莖葉圖如圖(單位:厘米),設莖高大于或等于180厘米的玉米為高莖玉米,否則為矮莖玉米.(1)求出易倒伏玉米莖高的中位數;(2)根據莖葉圖的數據,完成下面的列聯表:抗倒伏易倒伏矮莖高莖(3)根據(2)中的列聯表,是否可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關?附:,0.0500.0100.0013.8416.63510.82821.(12分)移動支付(支付寶及微信支付)已經漸漸成為人們購物消費的一種支付方式,為調查市民使用移動支付的年齡結構,隨機對100位市民做問卷調查得到列聯表如下:(1)將上列聯表補充完整,并請說明在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡是否有關?(2)在使用移動支付的人群中采用分層抽樣的方式抽取10人做進一步的問卷調查,從這10人隨機中選出3人頒發參與獎勵,設年齡都低于35歲(含35歲)的人數為,求的分布列及期望.(參考公式:(其中)22.(10分)如圖,在四棱錐中,,,,和均為邊長為的等邊三角形.(1)求證:平面平面;(2)求二面角的余弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】
充分性中,由向量數乘的幾何意義得,再由數量積運算即可說明成立;必要性中,由數量積運算可得,不一定有正數,使得,所以不成立,即可得答案.【詳解】充分性:若存在正數,使得,則,,得證;必要性:若,則,不一定有正數,使得,故不成立;所以是充分不必要條件故選:D【點睛】本題考查平面向量數量積的運算,向量數乘的幾何意義,還考查了充分必要條件的判定,屬于簡單題.2、D【解析】
根據題意得,設與共線的單位向量為,利用向量共線和單位向量模為1,列式求出即可得出答案.【詳解】因為,,則,所以,設與共線的單位向量為,則,解得或所以與共線的單位向量為或.故選:D.【點睛】本題考查向量的坐標運算以及共線定理和單位向量的定義.3、C【解析】
如圖所示:作垂直于準線交準線于,則,故,得到答案.【詳解】如圖所示:作垂直于準線交準線于,則,在中,,故,即.故選:.【點睛】本題考查了拋物線中角度的計算,意在考查學生的計算能力和轉化能力.4、B【解析】
由頻率分布直方圖求出在此路段上汽車行駛速度在區間的頻率即可得到車輛數,同時利用頻率分布直方圖能求行駛速度超過的頻率.【詳解】由頻率分布直方圖得:在此路段上汽車行駛速度在區間的頻率為,∴在此路段上汽車行駛速度在區間的車輛數為:,行駛速度超過的頻率為:.故選:B.【點睛】本題考查頻數、頻率的求法,考查頻率分布直方圖的性質等基礎知識,考查運算求解能力,是基礎題.5、B【解析】
還原幾何體的直觀圖,可將此三棱錐放入長方體中,利用體積分割求解即可.【詳解】如圖,三棱錐的直觀圖為,體積.故選:B.【點睛】本題主要考查了錐體的體積的求解,利用的體積分割的方法,考查了空間想象力及計算能力,屬于中檔題.6、B【解析】
作出該不等式組表示的平面區域,如下圖中陰影部分所示,設,則,易知當直線經過點時,z取得最小值,由,解得,所以,所以,故選B.7、D【解析】
根據函數定義域的求解方法可分別求得集合,由補集和交集定義可求得結果.【詳解】,,,.故選:.【點睛】本題考查集合運算中的補集和交集運算問題,涉及到函數定義域的求解,屬于基礎題.8、B【解析】
由函數的性質可得:的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,由函數圖像的作法可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4得解.【詳解】由偶函數滿足,可得的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,函數的圖像與函數()的圖像的位置關系如圖所示,可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4.故選:B【點睛】本題主要考查了函數的性質,考查了數形結合的思想,掌握函數的性質是解題的關鍵,屬于中檔題.9、B【解析】
根據不等式的性質對選項逐一判斷即可.【詳解】選項A:由于,即,,所以,所以,所以成立;選項B:由于,即,所以,所以,所以不成立;選項C:由于,所以,所以,所以成立;選項D:由于,所以,所以,所以,所以成立.故選:B.【點睛】本題考查不等關系和不等式,屬于基礎題.10、C【解析】因為,所以是等差數列,且公差,則,所以由題設可得,則,應選答案C.11、A【解析】
對復數進行化簡,由于為純虛數,則化簡后的復數形式中,實部為0,得到的值,從而得到復數.【詳解】因為為純虛數,所以,得所以.故選A項【點睛】本題考查復數的四則運算,純虛數的概念,屬于簡單題.12、D【解析】
由兩組數據間的關系,可判斷二者平均數的關系,方差的關系,進而可得到答案.【詳解】樣本的平均數是10,方差為2,所以樣本的平均數為,方差為.故選:D.【點睛】樣本的平均數是,方差為,則的平均數為,方差為.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
判斷的奇偶性和單調性,原不等式轉化為,運用單調性,可得到所求解集.【詳解】令,易知函數為奇函數,在R上單調遞增,,即,∴∴,即x>故答案為:【點睛】本題考查函數的奇偶性和單調性的運用:解不等式,考查轉化思想和運算能力,屬于中檔題.14、1080【解析】
按照先分組,再分配的分式,先將六人分成四組,其中兩個組各2人,另兩個組各1人有種,再分別奔赴四所不同的學校參加演講有種,然后用分步計數原理求解.【詳解】將六人分成四組,其中兩個組各2人,另兩個組各1人有種,再分別奔赴四所不同的學校參加演講有種,則不同的分配方案有種.故答案為:1080【點睛】本題主要考查分組分配問題,還考查了理解辨析的能力,屬于中檔題.15、【解析】
兩函數圖象上存在關于軸對稱的點的等價命題是方程在區間上有解,化簡方程在區間上有解,構造函數,求導,求出單調區間,利用函數性質得解.【詳解】解:根據題意,若函數與的圖象上存在關于軸對稱的點,則方程在區間上有解,即方程在區間上有解,設函數,其導數,又由,可得:當時,為減函數,當時,為增函數,故函數有最小值,又由;比較可得:,故函數有最大值,故函數在區間上的值域為;若方程在區間上有解,必有,則有,即的取值范圍是;故答案為:;【點睛】本題利用導數研究函數在某區間上最值求參數的問題,函數零點問題的拓展.由于函數的零點就是方程的根,在研究方程的有關問題時,可以將方程問題轉化為函數問題解決.此類問題的切入點是借助函數的零點,結合函數的圖象,采用數形結合思想加以解決.16、1【解析】
根據正態分布對稱性,求得質量低于的袋數的估計值.【詳解】由于,所以,所以袋牛肉干中,質量低于的袋數大約是袋.故答案為:【點睛】本小題主要考查正態分布對稱性的應用,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1);(2)【解析】
(1)對函數求導,運用可求得的值,再由在直線上,可求得的值;(2)由已知可得恒成立,構造函數,對函數求導,討論和0的大小關系,結合單調性求出最大值即可求得的范圍.【詳解】(1)由題得,因為在點與相切所以,∴(2)由得,令,只需,設(),當時,,在時為增函數,所以,舍;當時,開口向上,對稱軸為,,所以在時為增函數,所以,舍;當時,二次函數開口向下,且,所以在時有一個零點,在時,在時,①當即時,在小于零,所以在時為減函數,所以,符合題意;②當即時,在大于零,所以在時為增函數,所以,舍.綜上所述:實數的取值范圍為【點睛】本題考查函數的導數,利用導數求函數的單調區間及函數的最小值,屬于中檔題.處理函數單調性問題時,注意利用導函數的正負,特別是已知單調性問題,轉化為函數導數恒不小于零,或恒小于零,再分離參數求解,求函數最值時分析好單調性再求極值,從而求出函數最值.18、(1)(2)【解析】
(1)由拋物線定義可知,解得,故拋物線的方程為;(2)設直線:,聯立,利用韋達定理算出的中點,又,所以直線的方程為,求出,利用求解即可.【詳解】(1)設的準線為,過作于,則由拋物線定義,得,因為到的距離比到軸的距離大1,所以,解得,所以的方程為(2)由題意,設直線方程為,由消去,得,設,,則,所以,又因為為的中點,點的坐標為,直線的方程為,令,得,點的坐標為,所以,解得,所以直線的斜率為.【點睛】本題主要考查拋物線的定義,直線與拋物線的位置關系等基礎知識,考查學生的運算求解能力.涉及拋物線的弦的中點,斜率問題時,可采用韋達定理或“點差法”求解.19、(1)(2)【解析】
(1)通過討論的范圍,得到關于的不等式組,解出取并集即可.(2)去絕對值將函數寫成分段函數形式討論分段函數的單調性由恒成立求得結果.【詳解】解:(1)當時,,即或或解之得或,即不等式的解集為.(2)由題意得:當時為減函數,顯然恒成立.當時,為增函數,,當時,為減函數,綜上所述:使恒成立的的取值范圍為.【點睛】本題考查了解絕對值不等式問題,考查不等式恒成立問題中求解參數問題,考查分類討論思想,轉化思想,屬于中檔題.20、(1)190(2)見解析(3)可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關.【解析】
(1)排序后第10和第11兩個數的平均數為中位數;(2)由莖葉圖可得列聯表;(3)由列聯表計算可得結論.【詳解】解:(1).(2)抗倒伏易倒伏矮莖154高莖1016(3)由于,因此可以在犯錯誤的概率不超過1%的前提下,認為抗倒伏與玉米矮莖有關.【點睛】本題考查莖葉圖,考查獨立性檢驗,正確認識莖葉圖是解題關鍵.21、(1)列聯表見解析,在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡有關;(2)分布列見解析,期望為.【解析】
(1)根據題中所給的條件補全列聯表,根據列聯表求出觀測值,把觀測值同臨界值進行比較,得到能在犯錯誤的概率不超過0.01的前提下,認為支付方式與年齡有關.(2)首先確定的取值,求出相應的概率,可得分布列和數學期望.【詳解】(1)根據題意及列聯表可得完整的列聯表如下:35歲以下(含35歲)35歲以上合計使用移動支付401050不使用移動支付104050合計5050100根據公式可得,所以在犯錯誤的概率不超過0.01的前提下,認為支
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 江蘇省無錫市懷仁中學2024-2025學年高一下學期期中考試數學試卷
- 2025年鑄件項目建議書
- 通達OA系統應用培訓
- 澳大利亞新西蘭市場拓展股權投資合作框架協議
- 日韓房地產跨境合伙開發合同
- 基因治療載體研發與臨床試驗倫理審查合作框架協議
- 私人游艇航海雷達租賃與航行培訓合同
- 網紅爆款面包區域代理權許可合同
- 景區旅游文化園區股權合作開發合同
- 公共設施建設塔吊操作人員派遣與進度管理合同
- 2024年杭州良渚文化城集團有限公司招聘真題
- 蘇州蘇州工業園區部分單位招聘51人筆試歷年參考題庫附帶答案詳解
- 北京2025年國家藝術基金管理中心招聘應屆畢業生筆試歷年參考題庫附帶答案詳解
- 四川省攀枝花市2025屆高三第三次統一考試地理試題及答案
- 安徽省皖南八校2025屆高三下學期第三次聯考物理試卷 含解析
- 安徽省部分高中2025屆高考生物四模試卷含解析
- 2025-2030全球及中國燃氣輪機服務行業市場現狀供需分析及市場深度研究發展前景及規劃可行性分析研究報告
- 2025-2030中國老年教育行業發展前景及發展策略與投資風險研究報告
- 初中學生安全教育課件
- 2025年下半年度云南云勤服務集團限責任公司高校畢業生公開招聘13人易考易錯模擬試題(共500題)試卷后附參考答案
- 2024年延安通和電業有限責任公司招聘考試真題
評論
0/150
提交評論