




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
重慶市七校聯盟2025屆高考數學全真模擬密押卷注意事項1.考試結束后,請將本試卷和答題卡一并交回.2.答題前,請務必將自己的姓名、準考證號用0.5毫米黑色墨水的簽字筆填寫在試卷及答題卡的規定位置.3.請認真核對監考員在答題卡上所粘貼的條形碼上的姓名、準考證號與本人是否相符.4.作答選擇題,必須用2B鉛筆將答題卡上對應選項的方框涂滿、涂黑;如需改動,請用橡皮擦干凈后,再選涂其他答案.作答非選擇題,必須用05毫米黑色墨水的簽字筆在答題卡上的指定位置作答,在其他位置作答一律無效.5.如需作圖,須用2B鉛筆繪、寫清楚,線條、符號等須加黑、加粗.一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知向量,,若,則()A. B. C. D.2.已知定義在R上的偶函數滿足,當時,,函數(),則函數與函數的圖象的所有交點的橫坐標之和為()A.2 B.4 C.5 D.63.過拋物線的焦點且與的對稱軸垂直的直線與交于,兩點,,為的準線上的一點,則的面積為()A.1 B.2 C.4 D.84.已知α,β是兩平面,l,m,n是三條不同的直線,則不正確命題是()A.若m⊥α,n//α,則m⊥n B.若m//α,n//α,則m//nC.若l⊥α,l//β,則α⊥β D.若α//β,lβ,且l//α,則l//β5.已知函數(,,),將函數的圖象向左平移個單位長度,得到函數的部分圖象如圖所示,則是的()A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件6.如圖是2017年第一季度五省GDP情況圖,則下列陳述中不正確的是()A.2017年第一季度GDP增速由高到低排位第5的是浙江省.B.與去年同期相比,2017年第一季度的GDP總量實現了增長.C.2017年第一季度GDP總量和增速由高到低排位均居同一位的省只有1個D.去年同期河南省的GDP總量不超過4000億元.7.為計算,設計了如圖所示的程序框圖,則空白框中應填入()A. B. C. D.8.某學校調查了200名學生每周的自習時間(單位:小時),制成了如圖所示的頻率分布直方圖,其中自習時間的范圍是17.5,30],樣本數據分組為17.5,20),20,22.5),22.5,25),25,27.5),27.5,30).根據直方圖,這200名學生中每周的自習時間不少于22.5小時的人數是()A.56 B.60 C.140 D.1209.若非零實數、滿足,則下列式子一定正確的是()A. B.C. D.10.已知數列{an}滿足a1=3,且aA.22n-1+1 B.22n-1-111.設,是雙曲線的左,右焦點,是坐標原點,過點作的一條漸近線的垂線,垂足為.若,則的離心率為()A. B. C. D.12.已知,,,則的大小關系為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.用數字、、、、、組成無重復數字的位自然數,其中相鄰兩個數字奇偶性不同的有_____個.14.若函數,則的值為______.15.的展開式中的常數項為_______.16.若橢圓:的一個焦點坐標為,則的長軸長為_______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)在平面直角坐標系中,曲線的參數方程為(為參數),以原點為極點,軸的非負半軸為極軸,建立極坐標系,曲線的極坐標方程為.(1)求曲線的極坐標方程以及曲線的直角坐標方程;(2)若直線與曲線、曲線在第一象限交于兩點,且,點的坐標為,求的面積.18.(12分)某企業原有甲、乙兩條生產線,為了分析兩條生產線的效果,先從兩條生產線生產的大量產品中各抽取了100件產品作為樣本,檢測一項質量指標值.該項指標值落在內的產品視為合格品,否則為不合格品.乙生產線樣本的頻數分布表質量指標合計頻數2184814162100(1)根據甲生產線樣本的頻率分布直方圖,以從樣本中任意抽取一件產品且為合格品的頻率近似代替從甲生產線生產的產品中任意抽取一件產品且為合格品的概率,估計從甲生產線生產的產品中任取5件恰有2件為合格品的概率;(2)現在該企業為提高合格率欲只保留其中一條生產線,根據上述圖表所提供的數據,完成下面的列聯表,并判斷是否有90%把握認為該企業生產的這種產品的質量指標值與生產線有關?若有90%把握,請從合格率的角度分析保留哪條生產線較好?甲生產線乙生產線合計合格品不合格品合計附:,.0.1500.1000.0500.0250.0100.0052.0722.7063.8415.0246.6357.87919.(12分)一個工廠在某年里連續10個月每月產品的總成本(萬元)與該月產量(萬件)之間有如下一組數據:1.081.121.191.281.361.481.591.681.801.872.252.372.402.552.642.752.923.033.143.26(1)通過畫散點圖,發現可用線性回歸模型擬合與的關系,請用相關系數加以說明;(2)①建立月總成本與月產量之間的回歸方程;②通過建立的關于的回歸方程,估計某月產量為1.98萬件時,產品的總成本為多少萬元?(均精確到0.001)附注:①參考數據:,,,,.②參考公式:相關系數,,.20.(12分)某工廠生產一種產品的標準長度為,只要誤差的絕對值不超過就認為合格,工廠質檢部抽檢了某批次產品1000件,檢測其長度,繪制條形統計圖如圖:(1)估計該批次產品長度誤差絕對值的數學期望;(2)如果視該批次產品樣本的頻率為總體的概率,要求從工廠生產的產品中隨機抽取2件,假設其中至少有1件是標準長度產品的概率不小于0.8時,該設備符合生產要求.現有設備是否符合此要求?若不符合此要求,求出符合要求時,生產一件產品為標準長度的概率的最小值.21.(12分)某工廠為提高生產效率,需引進一條新的生產線投入生產,現有兩條生產線可供選擇,生產線①:有A,B兩道獨立運行的生產工序,且兩道工序出現故障的概率依次是0.02,0.03.若兩道工序都沒有出現故障,則生產成本為15萬元;若A工序出現故障,則生產成本增加2萬元;若B工序出現故障,則生產成本增加3萬元;若A,B兩道工序都出現故障,則生產成本增加5萬元.生產線②:有a,b兩道獨立運行的生產工序,且兩道工序出現故障的概率依次是0.04,0.01.若兩道工序都沒有出現故障,則生產成本為14萬元;若a工序出現故障,則生產成本增加8萬元;若b工序出現故障,則生產成本增加5萬元;若a,b兩道工序都出現故障,則生產成本增加13萬元.(1)若選擇生產線①,求生產成本恰好為18萬元的概率;(2)為最大限度節約生產成本,你會給工廠建議選擇哪條生產線?請說明理由.22.(10分)如圖,在四邊形ABCD中,AB//CD,∠ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.(Ⅰ)求證:平面ADE⊥平面BDEF;(Ⅱ)若二面角CBFD的大小為60°,求CF與平面ABCD所成角的正弦值.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】
利用平面向量平行的坐標條件得到參數x的值.【詳解】由題意得,,,,解得.故選A.【點睛】本題考查向量平行定理,考查向量的坐標運算,屬于基礎題.2、B【解析】
由函數的性質可得:的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,由函數圖像的作法可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4得解.【詳解】由偶函數滿足,可得的圖像關于直線對稱且關于軸對稱,函數()的圖像也關于對稱,函數的圖像與函數()的圖像的位置關系如圖所示,可知兩個圖像有四個交點,且兩兩關于直線對稱,則與的圖像所有交點的橫坐標之和為4.故選:B【點睛】本題主要考查了函數的性質,考查了數形結合的思想,掌握函數的性質是解題的關鍵,屬于中檔題.3、C【解析】
設拋物線的解析式,得焦點為,對稱軸為軸,準線為,這樣可設點坐標為,代入拋物線方程可求得,而到直線的距離為,從而可求得三角形面積.【詳解】設拋物線的解析式,則焦點為,對稱軸為軸,準線為,∵直線經過拋物線的焦點,,是與的交點,又軸,∴可設點坐標為,代入,解得,又∵點在準線上,設過點的的垂線與交于點,,∴.故應選C.【點睛】本題考查拋物線的性質,解題時只要設出拋物線的標準方程,就能得出點坐標,從而求得參數的值.本題難度一般.4、B【解析】
根據線面平行、線面垂直和空間角的知識,判斷A選項的正確性.由線面平行有關知識判斷B選項的正確性.根據面面垂直的判定定理,判斷C選項的正確性.根據面面平行的性質判斷D選項的正確性.【詳解】A.若,則在中存在一條直線,使得,則,又,那么,故正確;B.若,則或相交或異面,故不正確;C.若,則存在,使,又,則,故正確.D.若,且,則或,又由,故正確.故選:B【點睛】本小題主要考查空間線線、線面和面面有關命題真假性的判斷,屬于基礎題.5、B【解析】
先根據圖象求出函數的解析式,再由平移知識得到的解析式,然后分別找出和的等價條件,即可根據充分條件,必要條件的定義求出.【詳解】設,根據圖象可知,,再由,取,∴.將函數的圖象向右平移個單位長度,得到函數的圖象,∴.,,令,則,顯然,∴是的必要不充分條件.故選:B.【點睛】本題主要考查利用圖象求正(余)弦型函數的解析式,三角函數的圖形變換,二倍角公式的應用,充分條件,必要條件的定義的應用,意在考查學生的數學運算能力和邏輯推理能力,屬于中檔題.6、C【解析】
利用圖表中的數據進行分析即可求解.【詳解】對于A選項:2017年第一季度5省的GDP增速由高到低排位分別是:江蘇、遼寧、山東、河南、浙江,故A正確;對于B選項:與去年同期相比,2017年第一季度5省的GDP均有不同的增長,所以其總量也實現了增長,故B正確;對于C選項:2017年第一季度GDP總量由高到低排位分別是:江蘇、山東、浙江、河南、遼寧,2017年第一季度5省的GDP增速由高到低排位分別是:江蘇、遼寧、山東、河南、浙江,均居同一位的省有2個,故C錯誤;對于D選項:去年同期河南省的GDP總量,故D正確.故選:C.【點睛】本題考查了圖表分析,學生的分析能力,推理能力,屬于基礎題.7、A【解析】
根據程序框圖輸出的S的值即可得到空白框中應填入的內容.【詳解】由程序框圖的運行,可得:S=0,i=0滿足判斷框內的條件,執行循環體,a=1,S=1,i=1滿足判斷框內的條件,執行循環體,a=2×(﹣2),S=1+2×(﹣2),i=2滿足判斷框內的條件,執行循環體,a=3×(﹣2)2,S=1+2×(﹣2)+3×(﹣2)2,i=3…觀察規律可知:滿足判斷框內的條件,執行循環體,a=99×(﹣2)99,S=1+2×(﹣2)+3×(﹣2)2+…+1×(﹣2)99,i=1,此時,應該不滿足判斷框內的條件,退出循環,輸出S的值,所以判斷框中的條件應是i<1.故選:A.【點睛】本題考查了當型循環結構,當型循環是先判斷后執行,滿足條件執行循環,不滿足條件時算法結束,屬于基礎題.8、C【解析】
試題分析:由題意得,自習時間不少于小時的頻率為,故自習時間不少于小時的頻率為,故選C.考點:頻率分布直方圖及其應用.9、C【解析】
令,則,,將指數式化成對數式得、后,然后取絕對值作差比較可得.【詳解】令,則,,,,,因此,.故選:C.【點睛】本題考查了利用作差法比較大小,同時也考查了指數式與對數式的轉化,考查推理能力,屬于中等題.10、D【解析】試題分析:因為an+1=4an+3,所以an+1+1=4(an+1),即an+1+1an+1考點:數列的通項公式.11、B【解析】
設過點作的垂線,其方程為,聯立方程,求得,,即,由,列出相應方程,求出離心率.【詳解】解:不妨設過點作的垂線,其方程為,由解得,,即,由,所以有,化簡得,所以離心率.故選:B.【點睛】本題主要考查雙曲線的概念、直線與直線的位置關系等基礎知識,考查運算求解、推理論證能力,屬于中檔題.12、A【解析】
根據指數函數與對數函數的單調性,借助特殊值即可比較大小.【詳解】因為,所以.因為,所以,因為,為增函數,所以所以,故選:A.【點睛】本題主要考查了指數函數、對數函數的單調性,利用單調性比較大小,屬于中檔題.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
對首位數的奇偶進行分類討論,利用分步乘法計數原理和分類加法計數原理可得出結果.【詳解】①若首位為奇數,則第一、三、五個數位上的數都是奇數,其余三個數位上的數為偶數,此時,符號條件的位自然數個數為個;②若首位數為偶數,則首位數不能為,可排在第三或第五個數位上,第二、四、六個數位上的數為奇數,此時,符合條件的位自然數個數為個.綜上所述,符合條件的位自然數個數為個.故答案為:.【點睛】本題考查數的排列問題,要注意首位數字的分類討論,考查分步乘法計數和分類加法計數原理的應用,考查計算能力,屬于中等題.14、【解析】
根據題意,由函數的解析式求出的值,進而計算可得答案.【詳解】根據題意,函數,則,則;故答案為:.【點睛】本題考查分段函數的性質、對數運算法則的應用,考查函數與方程思想、轉化與化歸思想,考查運算求解能力.15、【解析】
寫出展開式的通項公式,考慮當的指數為零時,對應的值即為常數項.【詳解】的展開式通項公式為:,令,所以,所以常數項為.
故答案為:.【點睛】本題考查二項展開式中指定項系數的求解,難度較易.解答問題的關鍵是,能通過展開式通項公式分析常數項對應的取值.16、【解析】
由焦點坐標得從而可求出,繼而得到橢圓的方程,即可求出長軸長.【詳解】解:因為一個焦點坐標為,則,即,解得或由表示的是橢圓,則,所以,則橢圓方程為所以.故答案為:.【點睛】本題考查了橢圓的標準方程,考查了橢圓的幾何意義.本題的易錯點是忽略,從而未對的兩個值進行取舍.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)的極坐標方程為,的直角坐標方程為(2)【解析】
(1)先把曲線的參數方程消參后,轉化為普通方程,再利用求得極坐標方程.將,化為,再利用求得曲線的普通方程.(2)設直線的極角,代入,得,將代入,得,由,得,即,從而求得,,從而求得,再利用求解.【詳解】(1)依題意,曲線,即,故,即.因為,故,即,即.(2)將代入,得,將代入,得,由,得,得,解得,則.又,故,故的面積.【點睛】本題考查極坐標方程與直角坐標方程、參數方程與普通方程的轉化、極坐標的幾何意義,還考查推理論證能力以及數形結合思想,屬于中檔題.18、(1)0.0081(2)見解析,保留乙生產線較好.【解析】
(1)先求出任取一件產品為合格品的頻率,“從甲生產線生產的產品中任取5件,恰有2件為合格品”就相當于進行5次獨立重復試驗,恰好發生2次的概率用二項分布概率即可解決.(2)獨立性檢驗算出的觀測值即可判斷.【詳解】(1)根據甲生產線樣本的頻率分布直方圖,樣本中任取一件產品為合格品的頻率為:.設“從甲生產線生產的產品中任取一件且為合格品”為事件,事件發生的概率為,則由樣本可估計.那么“從甲生產線生產的產品中任取5件,恰有2件為合格品”就相當于進行5次獨立重復試驗,事件恰好發生2次,其概率為:.(2)列聯表:甲生產線乙生產線合計合格品9096186不合格品10414合計100100200的觀測值,∵,,∴有90%把握認為該企業生產的這種產品的質量指標值與生產線有關.由(1)知甲生產線的合格率為0.9,乙生產線的合格率為,∵,∴保留乙生產線較好.【點睛】此題考查獨立重復性檢驗二項分布概率,獨立性檢驗等知識點,認準特征代入公式即可,屬于較易題目.19、(1)見解析;(2)①②3.386(萬元)【解析】
(1)利用代入數值,求出后即可得解;(2)①計算出、后,利用求出后即可得解;②把代入線性回歸方程,計算即可得解.【詳解】(1)由已知條件得,,∴,說明與正相關,且相關性很強.(2)①由已知求得,,所以,所求回歸直線方程為.②當時,(萬元),此時產品的總成本約為3.386萬元.【點睛】本題考查了相關系數的應用以及線性回歸方程的求解和應用,考查了計算能力,屬于中檔題.20、(1)(2)【解析】
(1)根據題意即可寫出該批次產品長度誤差的絕對值的頻率分布列,再根據期望公式即可求出;(2)由(1)可知,任取一件產品是標準長度的概率為0.4,即可求出隨機抽取2件產品,都不是標準長度產品的概率,由對立事件的概率公式即可得到隨機抽取2件產品,至少有1件是標準長度產品的概率,判斷其是否符合生產要求;當不符合要求時,設生產一件產品為標準長度的概率為,可根據上述方法求出,解,即可得出最小值.【詳解】(1)由柱狀圖,該批次產品長度誤差的絕對值的頻率分布列為下表:00.010.020.030.04頻率0.40.30.20.0750.025所以的數學期望的估計為.(2)由(1)可知任取一件產品是標準長度的概率為0.4,設至少有1件是標準長度產品為事件,則,故不符合概率不小于0.8的要求.設生產一件產品為標準長度的概率為,由題意,又,解得,所以符合要求時,生產一件產品為標準長度的概率的最小值為.【點睛】本題主要考查離散型隨機變量的期望的求法,相互獨立事件同時發生的概率公式的應用,對立事件的概率公式的應用,解題關鍵是對題意的理解,意在考查學生的數學建模能力和數學運算能力,屬于基礎題.21、(1)0.0294.(2)應選生產線②.見解析【解析】
(1)由題意轉化條件得A工序不出現故障B工序出現故障,利用相互獨立事件的概率公式即可得解;(2)分別算出兩個生產線增加的生產成本的期望,進而求出兩個生產線的生產成本期望值,比較期望值即可得解.【詳解】(1)若選擇生產線①,生產成本恰好為18萬元,即A工序不出現故障B工序出現故障,故所求的概率為.(2)若選擇生產線①,設增加的生產成本為(萬元),則的可能取值為0,2,3,5.,,,,所以萬元;故選生產線①的生產成本期望值為(萬元).若選生產線②,設增加的生產成本為(萬元),則的可能取值為0,8,5,13.,,,,所以,故選生產線②的生產成本期望值為(萬元),故應選生產線②.【點睛】本題考查了
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- T/CMA HG028-2021輪胎冰地抓著性能測試道路制作及驗收和使用維護
- T/CITS 0006-2022標準“領跑者”評價要求音視頻設備檢驗檢測服務
- T/CIMA 0042-2023水體浮游動物在線監測儀
- T/CIIA 030-2022微生物數據庫安全體系設計要求
- T/CIE 121-2021逆導型IGBT的熱阻測試方法
- T/CECS 10114-2021增強高密度聚乙烯(HDPE-IW)六棱結構壁管材
- T/CECS 10066-2019綠色建材評價地源熱泵系統
- T/CAZG 006-2019貘類飼養管理技術規范
- T/CATSI 05001-2018移動式真空絕熱深冷壓力容器內容器應變強化技術要求
- T/CAQI 195-2021電熱水器健康功能技術要求和試驗方法
- 上海市同濟大學第二附屬中學2024-2025學年八年級下冊期末物理試卷
- 2025年液壓馬達開發行業深度研究報告
- 樹木移栽施工協議書
- 手術前抗凝藥停用時間
- 租地解除合同協議書
- 2025智能礦山暨無人駕駛行業藍皮書-億歐智庫
- 2025湖北水發集團園招聘40人筆試參考題庫附帶答案詳解
- 2025年人工智能應用技術考試試題及答案
- 2024北森圖形推理題
- 2025年全國國家版圖知識競賽賽(附答案)
- 2025年武漢鐵路局招聘筆試參考題庫含答案解析
評論
0/150
提交評論