




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
--本頁僅作為文檔封面,使用時請直接刪除即可--
--內頁可以根據需求調整合適字體及大小本頁僅作為文檔封面,使用時請直接刪除即可--
--內頁可以根據需求調整合適字體及大小--初一數學.秋.直升班.教師版.第6講三角形的兩大模型(總17頁)PAGE三角形的兩大模型三角形的兩大模型模塊一兩大模型與角度關系“飛鏢”模型“8”字模型飛鏢模型結論的常用證明方法:模塊二兩大模型與邊長關系“飛鏢”模型“8”字模型
模塊三多邊形1.多邊形的基本概念:(1)定義:在平面內,由一些線段首尾順次相接組成的圖形叫做多邊形.(2)要素:頂點、邊、內角、外角、對角線內角:、、、、……外角:對角線:連接不相鄰兩個頂點的線段是多邊形的對角線.如BD.n邊形對角線條數:條(3)分類:凸、凹多邊形:多邊形的每一邊都在任何一邊所在直線的同一側,叫做凸多邊形;反之叫做凹多邊形.(如圖)(4)正多邊形:各個角都相等,各條邊都相等的多邊形叫做正多邊形(如圖正六邊形)多邊形凸多邊形凹多邊形正六邊形2.多邊形的內角和:(1)結論:n邊形內角和等于.(2)證明:①過n邊形一個頂點,連對角線,可以得條對角線,并且將n邊形分成個三角形,這個三角形的內角和恰好是多邊形的內角和.②在n邊形邊上取一點與各頂點相連,得個三角形,n邊形內角和等于這個三角形內角和減去在所取的一點處的一個平角,即.③在n邊形內部取一點與n邊形各頂點相連,得n個三角形,這n個三角形所有內角之和為,故n邊形內角和等于.3.多邊形的外角和:(1)結論:多邊形外角和等于360°.(2)證明:如圖:,,,……等式右邊共有n個相加,代表n邊形的內角和,即.
模塊模塊一兩大模型與角度關系(1)如圖1-1,中,點D在BC的延長線上,過D作于E,交AC于F.已知,,則的度數為___________.(2)如圖1-2,,則.(3)如圖1-3,則___________.圖1-1圖1-2圖1-3(1);(2);(3).【教師備課提示】這道題主要考查三角形兩大模型的基礎倒角問題——找模型.(1)飛鏢模型:找燕尾;(2)“8”字模型:找×字.(1)如圖2-1,則.(2)如圖2-2,則.圖2-1圖2-2(1)本題既可按“8字模型”來考慮,也可按照飛鏢模型來做,也可以應用外角定理來解決,此題可以鍛煉學生一題多解,熟練靈活的應用.
=1\*GB3①如圖1,連接,應用“8字模型”,.②如圖2,應用飛鏢模型,∵∵,∴③如圖3,應用外角定理,∵又∵,∴圖1圖2圖3(2)法一:∵∠A+∠B=∠5+∠6 ①∠C+∠D=∠4+∠6 ②∠E+∠F=∠4+∠5 ③=1\*GB3①+②+③=2(∠4+∠5+∠6),∵.∴.法二:∵, ①, ②. ③而,,,且. ④∴①+②+③④得,法三:連接,∴【教師備課提示】這道題相對復雜,鍛煉孩子們找模型的能力和倒角能力,一題多解.(1)如圖3-1,已知,,則.(2)如圖3-2,則.圖3-1圖3-2(1);利用兩次“8”字模型.(2);連接BD,利用兩次飛鏢模型.【教師備課提示】這道題主要需要孩子們自己連接輔助線,鍛煉倒角能力.
如圖,已知,BO平分,DO平分,..已知:如圖,,AM,CM分別平分和.(1)求的大小;(2)當,為任意角時,探索與,間的數量關系,并對你的結論加以證明.(1)根據三角形內角和定理,在和中,,,∴ ①同理 ②∵,,∴①+②得,即(2)當、為任意角時,,證明:根據三角形外角性質,可得:,,∴,∴又∵、分別平分、∴,,∴∴,即【教師備課提示】例4—例5主要考查兩大模型的拓展,自己拓展出結論.
模塊模塊二兩大模型與邊長關系如圖,AC、BD是四邊形ABCD的對角線,且AC、BD相交于點O.求證:(1);(2).(1)在中,,在中,,兩不等式相加得,∴即 (2)應用上題的結論:,,∴.三角形不等式是指一個三角形的兩邊長度之和大于第三邊的長度.在下圖中,E位于線段CA上,D位于線段BE上.(1)說明為什么.(2)說明為什么.(3)與,哪一個更大?證明你的答案;
(4)與,哪一個更大?證明你的答案.
(1)由三角形三邊關系,.(2)由三角形三邊關系,.因此,.(3)由三角形三邊關系,,,以及,將三個不等式相加,得.(4)由(2)可知.類似可得,以及.將這三個不等式相加,可得,即.【教師備課提示】例6—例7主要考查兩大模型和邊長的關系.
模塊模塊三多邊形(1)下列平面圖形不具有穩定性.(黑點表示連接點)A.B.C.D.(2)科技館為某機器人編制一段程序,如果機器人在平地上按照圖示中的步驟行走,那么該機器人所走的總路程為()A.6米 B.8米C.12米 D.不確定(3)m邊形的一個頂點有7條對角線,n邊形沒有對角線,k邊形對角線條數等于邊數,則
.(1)C.提示:三角形具有穩定性.(2)B.多邊形的外角和為,每個外角為,則,故多邊形邊數為,則周長為.(3)m邊形的一個頂點有7條對角線,所以,則;沒有對角線的多邊形顯然是三角形,則;k邊形條數與其邊數相等,即,所以.故.(1)若一個多邊形的內角和等于,則這個多邊形的邊數是()A.5 B.6 C.7 D.8(2)若一個正多邊形的一個外角是,則這個正多邊形的邊數是()A.10 B.9 C.8 D.6(3)一個多邊形內角和是外角和的4倍,那么這是()邊形.A.10 B.22 C.15 D.8(4)如果一個五邊形的4個內角都是,則第5個內角的度數是.
(5)一個凸多邊形的每一個內角都等于,那么,從這個多邊形的一個頂點出發的對角線的條數是.(1)B;(2)B.(3)A.設多邊形的邊數為,由題意得,解得.(4).(5)6.每個外角為,邊數為,則每個頂點出發得到對角線的條數:.(1)一個凸多邊形的內角中,最多有個銳角.(2)一個凸n邊形,除一個內角外,其余個內角的和是,則n的值為.(1)3.(2)由凸邊形的內角得,,解不等式的,故.如圖,求六個角的和.連接DE、EF,BE與DG的交點為O∵三角形內角和等于,
∴,∵,∴同理∴.教教師備選1如圖所示,在中,,在上,,是上的任意一點,求證.作點關于的對稱點,則點落在線段CD上.連接交于點,連接.由軸對稱圖形的性質可得,.在中,,在中,.因此,所以.教教師備選2如圖,在三角形ABC中,,為三角形內任意一點,連結AP,并延長交BC于點D.求證:(1);(2).
(1)∵,∴∵,∴,∴∵,∴(2)過點作,交、于、,則,由(1)知∵,∴即幾何證明中后一問常常要用到前一問的結論.
復復習鞏固模塊一模塊一兩大模型與角度、邊長關系(1)如圖1-1,已知,,,則__________.(2)如圖1-2,,,則___________.圖1-1圖1-2(1)130°;(2)10°.(1)如圖2-1,__________.(2)如圖2-2,__________.圖2-1圖2-2(1);(2)連接BC,∵(對頂角相等)∴(等量減等量差相等)∴(等量代換),∵(三角形內角和定義),∴(等量代換).
將圖3-1中線段AD上一點E(點A、D除外)向下拖動,依次可得圖3-2、圖3-3、圖3-4.分別探究圖3-2、圖3-3、圖3-4中、、、、()之間有什么關系?
圖3-1圖3-2圖3-3圖3-4探究圖3-2、圖3-3、圖3-4可得:(或)圖3-2中:證明:,.∵,∴即圖3-3中:同上可證圖3-4中:同上可證(1)已知如圖4-1所示,在圖形ABCDEFG中,若BC由,,而,所以,原式.(3)所以.已知,如圖,P,Q為三角形ABC內兩點,B,P,Q,C構成凸四邊形.
求證:.作直線PQ,分別與AB,AC交于點M,N由三角形的三邊關系可得=1\*GB3①+②+③得∴,即.模塊二模塊二多邊形(1)一個多邊形的內角和比它的外角和的3倍少,這個多邊形的邊數是.(2)一凸n邊形最小的內角為,其它內角依次增加,則_________.
(3)在凸多邊形中,小于的角最多可以有(
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 幼兒園2024-2025年親子活動計劃
- 2025年捕蠅器項目市場調查研究報告
- 時尚管理專業畢業實習總結
- 寫冬初二作文550字冬天滿分作文13篇范文
- 中國書法介紹課件
- 2025年巖棉半硬板項目市場調查研究報告
- 能源項目實施成本控制方案
- 寫景作文桑基魚塘400字8篇
- 做蛋炒飯說明文600字初中8篇
- 一年級狀物作文小兔臺燈100字13篇范文
- 國有企業干部選拔任用條例
- 辦理居住證工作證明 (模板)
- 中藏醫適宜技術課件
- 通用造價35kV~750kV線路(國網)課件
- 2022年廣東省深圳市中考化學真題試卷
- 工貿企業有限空間作業場所安全管理臺賬
- 國際財務管理教學ppt課件(完整版)
- DB33∕T 715-2018 公路泡沫瀝青冷再生路面設計與施工技術規范
- 彩色簡約魚骨圖PPT圖表模板
- 光引發劑的性能與應用
- PID控制經典PPT
評論
0/150
提交評論