




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
CurrentBestPractices
forTrainingLLMsfromScratch
Authors:RebeccaLi,AndreaParker,JustinTenuto
·······weights&Biases
TableofContents
Introduction03
Buildvs.BuyPre-trainedLLMModels03
TheScalingLaws05
Hardware06
Memoryvs.ComputeEfficiency06
TechniquesforParallelization06
DatasetCollection08
DatasetPre-processing08
DatasetHandling08
Tokenization09
Pre-trainingSteps13
ModelEvaluation15
BiasandToxicity16
InstructionTuning17
ReinforcementLearningthroughHumanFeedback(RLHF)19
Conclusion20
References20
Appendix21
LLMOverview21
TransformerModelArchitecture21
TheOriginalLLMScalingLaws23
www.wandb.ai?contact@wandb.ai2
·······weights&Biases
Introduction
Althoughwe’reonlyafewyearsremovedfromthetransformer
breakthrough,LLMshavealreadygrownmassivelyin
performance,cost,andpromise.AtW&B,we’vebeenfortunatetoseemoreteamstrytobuildLLMsthananyoneelse.Butmanyofthecriticaldetailsandkeydecisionpointsareoftenpasseddownbywordofmouth.
Thegoalofthiswhitepaperistodistillthebestpracticesfor
trainingyourownLLMforscratch.We’llcovereverythingfromscalingandhardwaretodatasetselectionandmodeltraining,lettingyouknowwhichtradeoffstoconsiderandflaggingsomepotentialpitfallsalongtheway.Thisismeanttobeafairly
exhaustivelookatthekeystepsandconsiderationsyou’llmakewhentraininganLLMfromscratch.
Thefirstquestionyoushouldaskyourselfiswhethertrainingonefromscratchisrightforyourorganization.Assuch,we’llstartthere:
BUILDVS.BUYPRE-TRAINEDLLMMODELS
BeforestartingLLMpre-training,thefirstquestionyouneedtoaskiswhetheryoushouldpre-trainanLLMbyyourselforuseanexistingone.Therearethreebasicapproaches:
?Option1:UsetheAPIofacommercialLLM,e.g.GPT-3(OpenAI,2020),CohereAPIs,AI21J-1
?Option2:Useanexistingopen-sourcedLLM,e.g.GPT-J(EleutherAI,2021),GPT-NeoX(EleutherAI,2022),Galactica(MetaAI),UL2(Google,2022),OPT(MetaAI,2022),BLOOM(BigScience,2022),Megatron-LM(NVIDIA,2021),CodeGen(Salesforce,2022)
?Option3:Pre-trainanLLMbyyourselforwithconsultants:
YoucaneithermanageyourowntrainingorhireLLM
consultants&platforms.Forexample,MosaicMLprovidestrainingservicesfocusingonLLMs.
Thatsaid,therearealotofdetailstoconsiderwhenmakingyourchoice.Herearethepros,cons,andapplicablescenariosforeachoption:
Option3
Pre-trainanLLMbyyourselforwithconsultants
Option2
Useanexistingopen-sourcedLLM
Option1
UsetheAPIofacommercialLLM
Pros
?RequirestheleastLLMtrainingtechnicalskills.
?Minimumupfronttraining/
explorationcost,givenmaincostincursatinferencetime.
?Theleastdata-demandingoption.
Onlyafewexamples(ornoexamples)areneededformodelstoperform
inference.
?Canleveragethebest-performingLLMsinthemarketandbuilda
superiorexperience.
?Reducetime-to-marketofyour
appsandde-riskyourprojectwithaworkingLLMmodel.
?AgoodwaytoleveragewhatLLMs
havelearnedfromavastamountofinternetdataandbuildontopofit
withoutpayingfortheIPatinference.
?Comparedtooptionone,youarelessdependentonthefuturedirectionofLLMserviceprovidersandthushavemorecontrolregardingroadmap&backwardscompatibility.
?Comparedtooptionthree,youhaveamuchfastertime-to-valuegivenyouarenotbuildingLLMsfromscratch,alsoleadingtolessdata,training
time,trainingbudgetneeded.
?Comparedtooptionsoneandtwo,youhavethemostcontrolofyour
LLM’sperformanceandfuture
direction,givingyoulotsofflexibilitytoinnovateontechniquesand/or
customizetoyourdownstreamtasks.
?Gainfullcontroloftrainingdatasetsusedforthepre-training,which
directlyimpactsmodelquality,bias,andtoxicityissues.Incomparison,thoseissuesarelesscontrollableinoptiononeortwo.
?TrainingyourownLLMalsogives
youadeepmoat:superiorLLM
performanceeitheracrosshorizontalusecasesortailoredtoyourvertical,allowingyoutobuildasustaining
advantageespeciallyifyoucreateapositivedata/feedbackloopwithLLMdeployments.
www.wandb.ai?contact@wandb.ai3
·······weights&Biases
Option1
Option2
Option3
UsetheAPIofacommercialLLM
Useanexistingopen-sourcedLLM
Pre-trainanLLMbyyourselforwithconsultants
Cons
?CommercialLLMservicescanget
expensivewithahighvolumeoffine-tuningorinferencetasks.Itcomes
downtoLLMtotal-cost-of-ownership(TCO)amortizedtoeachinference.
?Manyindustries/usecasesforbidtheuseofcommercialLLMservicesassensitivedata/PIIdatacannotbeseenbytheserviceforcompliance(healthcareusecases,forexample).
?Ifbuildingexternalapps,you’llneedtofindothermoatsandde-riskyourbusinessifyou’rehighlyreliantonexternalLLMservicetechnology.
?Lessflexibledownstream:doesn’t
supportedgeinference,limited
abilitytocustomizethemodel(fine-tuninggetsexpensive),limitedabilityforongoingmodelimprovements.
?Notasdemandingasbuilding
yourown,butstillrequireslotsofdomainexpertskillstotrain,fine-tune,andhostanopen-sourcedLLM.LLMreproducibilityisstillasignificantissuesotheamountoftimeandworkneededcannotbeunderestimated.
?Slowertime-to-marketandlessagileifyouarebuildingdownstreamapps,duetoamoreverticaltechstack.
?Open-sourcedmodelstypically
lagperformancecomparedto
commercialmodelsbymonths/years.Ifyourcompetitorleveragescommercialmodels,theyhaveanadvantageonLLMtechandyou’llneedtofindothercompetitive
advantages.
?Veryexpensiveendeavorwith
highrisks.Needcross-domain
knowledgespanningfromNLP/ML,subjectmatterexpertise,softwareandhardwareexpertise.Ifnotdonewell,youcouldendupinasituationwhereyou’vespentthousands
orevenmillionsofdollarswith
asuboptimalmodel.Mistakes,
especiallylateintotrainingstages,arehardtofix/unwind.
?Lessefficientthanoptiontwo.
OptiontwoleveragesexistingLLMs,learningfromanentireinternet’s
worthofdataandcanprovidea
solidstartingpoint.Withoption3,youstartfromscratchandneedlotsofhigh-quality/diversedatasets
foryourmodelstogaingeneralizedcapabilities.
Whentoconsidereachoption
?BestifyoueitherhavelesstechnicalteamsbutwanttoleverageLLM
techniquestobuilddownstream
apps,oryouwanttoleveragethebest-in-classLLMsforperformancereasons(outsourcingtheLLMtech).
?Betweenoptionstwoandthree,
ifyouaren’ttryingtochangethe
modelarchitecture,itisalmost
alwaysbettertoeitherdirectlytakeanexistingpre-trainedLLMand
fine-tuneitortaketheweightsofan
?Bestifyouneedtochangemodelarchitectureortrainingdatasetfromexistingpre-trainedLLMs.Forexample,ifyouwanttouseadifferenttokenizer,changethevocabularysize,orchangethe
?Goodifyouhaveverylimitedtrainingdatasetsandwanttoleveragean
LLM’scapabilitytodozero/few-shotlearning.
existingpre-trainedLLMasastartingpointandcontinuepre-training.Thereasonisbecauseagoodpre-trainedLLMlikeGPT-NeoXhasalreadyseenavastamountofdataandthushas
numberofhiddendimensions,attentionheads,orlayers.
?Typically,inthiscasetheLLMisa
corepartofyourbusinessstrategy&
?Goodforprototypingappsand
exploringwhatispossiblewithLLMs.
learnedgeneralcapabilitiesfromthedata.Youcanleveragethatlearningespeciallyifyourtrainingdatasetisnothugeordiverse.
?Anothertypicalscenarioisthatyouoperateinaregulatoryenvironmentorhaveuser/sensitivedatathat
cannotbefedtocommercial
LLMservices.Oryouneededge
deploymentofthemodelforlatencyorlocationalreasons.
technologicalmoat.Youaretakingonsomeoralotofinnovations
inLLMtraining,andhavealargeinvestmentappetitetotrainandmaintainexpensivemodelsonanongoingbasis.
?Typically,youhaveorwillhavelotsofproprietarydataassociatedwithyourLLMtocreateacontinuous
modelimprovementloopfor
sustainablecompetitiveadvantage.
Itisalsoworthmentioningthatifyouonlyhaveaverytargetedsetofusecasesanddon’tneedthegeneral-purposecapabilitiesor
generativecapabilitiesfromLLMs,youmightwanttoconsidertrainingorfine-tuningamuchsmallertransformerorothermuchsimplerdeeplearningmodels.Thatcouldresultinmuchlesscomplexity,lesstrainingtime,andlessongoingcosts.
www.wandb.ai?contact@wandb.ai4
·······weights&Biases
THESCALINGLAWS
Beforeyoudiveintotraining,it’simportanttocoverhowLLMsscale.Understandingscalingletsyoueffectivelybalancethesizeandcomplexityofyourmodelandthesizeofthedatayou’llusetotrainit.
Somerelevanthistoryhere:OpenAIoriginallyintroduced“theLLMscalinglaws”in2020.Theysuggestedthatincreasingmodelsizewasmoreimportantthanscalingdatasize.Thisheldfor
abouttwoyearsbeforeDeepMindsuggestedalmostthepolaropposite:thatpreviousmodelsweresignificantlyundertrainedandthatincreasingyourfoundationaltrainingdatasetsactuallyleadstobetterperformance.
Thatchangedin2022.Specifically,DeepMindputforward
analternativeapproachintheir
TrainingCompute-Optimal
LargeLanguageModels
paper.TheyfoundthatcurrentLLMsareactuallysignificantlyundertrained.Putsimply:theselargemodelsweren’ttrainedonnearlyenoughdata.
DeepmindshowcasedthiswithamodelcalledChinchilla,whichisafourththesizeoftheGophermodelabovebuttrainedon
4.6xmoredata.Atthatreducedsizebutwithfarmoretrainingdata,ChinchillaoutperformedGopherandotherLLMs.
DeepMindclaimsthatthemodelsizeandthenumberof
trainingtokens*shouldinsteadincreaseatroughlythesameratetoachieveoptimalperformance.Ifyougeta10xincreaseincompute,youshouldmakeyourmodel3.1xtimesbiggerandthedatayoutrainover3.1xbigger;ifyougeta100xincreaseincompute,youshouldmakeyourmodel10xbiggerandyourdata10xbigger.
*Note:TokenizationinNLPisanessentialstepofseparatingapiece
oftextintosmallerunitscalledtokens.Tokenscanbeeitherwords,
characters,orsubwords.Thenumberoftrainingtokensisthesizeof
trainingdataintokenformaftertokenization.Wewilldiveintodetailedtokenizationmethodsalittlelater.
DeepMindprovidesthefollowingchartshowinghowmuch
trainingdataandcomputeyou’dneedtooptimallytrainmodelsofvarioussizes.
EstimatedoptimaltrainingFLOPsandtrainingtokensforvariousmodelsizes,
TrainingCompute-OptimalLargeLanguageModels
Thatsaid,mostexistingLLMsarestillundertrained:
Data/compute-optimal(Chinchilla)heatmap,
Chinchilla
data-optimalscalinglaws:InplainEnglish
Insummary,thecurrentbestpracticesinchoosingthesizeofyourLLMmodelsarelargelybasedontworules:
?DecideonyourdatasetandfindtheChinchilla-optimal
modelsizebasedondatasize(orclosetoChinchilla-optimalwithintheboundaryofyourdatacollectionlimitation)
?Determinethedataandmodelsizecombinationthat’sbestforyourmodel,basedonyourtrainingcomputebudgetandinferencelatencyrequirements
Totheleftoftheminimaoneachcurve,modelsaretoosmall--alargermodeltrainedonlessdatawouldbeanimprovement.Totherightoftheminimaoneachcurve,modelsaretoolarge--asmallermodeltrainedonmoredatawouldbeanimprovement.Thebestmodelsareattheminima.
www.wandb.ai?contact@wandb.ai5
·······weights&Biases
HARDWARE
Itshouldcomeasnosurprisethatpre-trainingLLMsisa
hardware-intensiveeffort.Thefollowingexamplesofcurrentmodelsareagoodguidehere:
?PaLM(540B,Google):6144TPUv4chipsusedintotal,madeoftwoTPUv4Podsconnectedoverdatacenternetwork(DCN)usingacombinationofmodelanddataparallelism
?OPT(175B,MetaAI):99280GBA100GPUs,utilizingfullyshareddataparallelismwithMegatron-LMtensorparallelism
?GPT-NeoX(20B,EleutherAI):9640GBA100GPUsintotal
?Megatron-TuringNLG(530B,NVIDIA&MSFT):560DGXA100nodes,eachclusternodehas8NVIDIA80-GB
A100GPUs
TrainingLLMsischallengingfromaninfrastructureperspectivefortwobigreasons.Forstarters,itissimplynolongerpossibletofitallthemodelparametersinthememoryofeventhelargestGPU(e.g.NVIDIA80GB-A100),soyou’llneedsomeparallel
architecturehere.Theotherchallengeisthatalargenumberofcomputeoperationscanresultinunrealisticallylongtrainingtimesifyouaren’tconcurrentlyoptimizingyouralgorithms,
software,andhardwarestack(e.g.trainingGPT-3with175Bparameterswouldrequireabout288yearswithasingleV100NVIDIAGPU).
Memoryvs.ComputeEfficiency
TechniquesforParallelization
Parallelizationreferstosplittinguptasksanddistributing
themacrossmultipleprocessorsordevices,suchasGPUs,sothattheycanbecompletedsimultaneously.Thisallowsformoreefficientuseofcomputeresourcesandfastercompletiontimescomparedtorunningonasingleprocessorordevice.
ParallelizedtrainingacrossmultipleGPUsisaneffectivewaytoreducetheoveralltimeneededforthetrainingprocess.
Thereareseveraldifferentstrategiesthatcanbeusedto
parallelizetraining,includinggradientaccumulation,micro-
batching,dataparallelization,tensorparallelizationandpipelineparallelization,andmore.TypicalLLMpre-trainingemploysa
combinationofthesemethods.Let’sdefineeach:
DataParallelism
Dataparallelismisthebestandmostcommonapproachfor
dealingwithlargedatasetsthatcannotfitintoasinglemachineinadeeplearningworkflow.
Morespecifically,dataparallelismdividesthetrainingdataintomultipleshards(partitions)anddistributesthemtovarious
nodes.Eachnodefirstworkswithitslocaldatatotrainitssub-model,andthencommunicateswiththeothernodestocombinetheirresultsatcertainintervalsinordertoobtaintheglobal
model.Theparameterupdatesfordataparallelismcanbeeitherasynchronousorsynchronous.
Theadvantageofthismethodisthatitincreasescompute
efficiencyandthatitisrelativelyeasytoimplement.ThebiggestdownsideisthatduringthebackwardpassyouhavetopassthewholegradienttoallotherGPUs.Italsoreplicatesthemodelandoptimizeracrossallworkerswhichisrathermemoryinefficient.
ToachievethefullpotentialofthousandsofdistributedGPUs,itiscrucialtodesignparallelismintoyourarchitectureto
balancememoryandcomputeefficiency.
Memoryefficiency
TrainingaLLMrequiresterabytesofaggregatememoryfor
modelweights,gradients,andoptimizerstates-farbeyondwhatisavailableonasingleGPU.Onetypicalmitigationstrategyis
gradientaccumulation,inwhichthefulltrainingbatchissplitintomicro-batchesthatareprocessedinsequencewiththeirresultinggradientsaccumulatedbeforeupdatingthemodel
weights.Thatmeansyourtrainingbatchsizecanscalewithoutincreasingthepeakresidentactivationmemory.
Computeefficiency
WhilelargeGPUclusterscanhavethousandsofhigh-throughputGPUs,achievinghighcomputeefficiencyatthisscaleis
challenging.Alargebatchsizecanbeaneffectivewaytoincreasecomputeefficiency,becauseitincreasesthearithmeticintensityofaGPUkernelandhelpsamortizethetimespentstalledon
communicationandsynchronization.However,usingtoolargeofabatchsizecanhavenegativeeffectsonthemodelquality.
Whileparallelizationisparamount,therearemanydifferent
waystodoit.We’llgetintothemostcommoninournextsection.
www.wandb.ai?contact@wandb.ai6
·······weights&Biases
TensorParallelism
Tensorparallelismdivideslargematrixmultiplicationsintosmallersubmatrixcalculationswhicharethenexecuted
simultaneouslyusingmultipleGPUs.
Thisallowsforfastertrainingtimesduetoitsasynchronousnatureandtheabilitytoreducecommunicationoverheadbetweennodes.Thebenefitofthismethodisthatitis
memory-efficient.Thedownside,however,isthatit
introducesadditionalcommunicationofactivationsineachforward&backwardpropagation,andthereforerequireshighcommunicationbandwidthtobeefficient.
Pipelineparallelismandmodelparallelism
Pipelineparallelismimprovesboththememoryandcomputeefficiencyofdeeplearningtrainingbypartitioningthelayersofamodelintostagesthatcanbeprocessedinparallel.
Thishelpswithoverallthroughputspeedssignificantlywhile
addingthesmallestcommunicationoverhead.Youcanthinkofpipelineparallelismas“inter-layerparallelism”(wheretensor
parallelismcanbethoughtofas“intra-layerparallelism”).
Similartopipelineparallelism,modelparallelismiswhenyou
splitthemodelamongGPUsandusethesamedataforeach
model;soeachGPUworksonapartofthemodelratherthanapartofthedata.Thedownsideofpipelineandmodelparallelismisthatitcannotscaleinfinitelygiventhatthedegreeofpipelineparallelismisboundedbythedepthofthemodel.
Asmentionedatthestartofthissection,it’snotuncommonforteamstoleverageacombinationofparallelismtechniquesduringtraining.Forexample,PaLM(GoogleBrain,2022)andOPT(MetaAI,2022)bothusedacombinationoftensormodelparallelismanddataparallelism.
NVIDIAapproachedthingsalittledifferentlyinthe
Efficient
Large-ScaleLanguageModelTrainingonGPUClustersUsing
Megatron-LM
paper.TheyproposedaPTD-Ptechniquethat
combinespipeline,tensor,anddataparallelismtoachieve
state-of-the-artcomputationalperformance(52%ofpeakdevicethroughput)on1000sofGPUs.
Specifically,PTD-Pleveragesacombinationofpipeline
parallelismacrossmulti-GPUservers,tensorparallelismwithinamulti-GPUserver,anddataparallelismtopracticallytrain
modelswithatrillionparameters.Themethodalsoemploys
gracefulscalinginanoptimizedclusterenvironmentwithhigh-bandwidthlinksbetweenGPUsonthesameserverandacrossservers.
UsingthesetechniquestotrainLLMsrequiresnotonlythe
highest-performingGPUstobeefficient,butalsoneedshigh-
bandwidthnetworkingforoptimalcommunication––InfiniBandisoftenusedtomovedatabetweennodes.
Butthisofcoursecomeswithacost.Leveragingthousands
ofhigh-performingGPUsandhigh-bandwidthnetworksto
trainLLMsisinfrastructure-intensive.Forexample,aback-of-the-envelopecalculationestimatedthatthecostofthePaLMmodel(540B,Google)mightbeashighas$23MM
(seedetailed
analysis
).
Toimplementdistributeddeeplearningtrainingsystems,
softwaretoolkitssuchasDistributedTensorFlow,Torch
Distributed,Horovod,andlibrariessuchasDeepSeedand
Megatronareoftenneeded.Thereisimplementationcomplexityheresoitrequiressystemexpertiseifyou’regoingtobe
successful.
Inaddition,thefollowingtechniquesandstrategiesarecommonlyemployedtoachieveparallelism:
Gradientaccumulation
Gradientaccumulationinvolvesaddingupgradientsfrom
multiplebatchesbeforeperformingoneweightupdatesteponallaccumulatedgradientsatonce.
ThisapproachreducescommunicationoverheadbetweenGPUsbyallowingthemtoworkindependentlyontheirownlocalbatchofdatauntiltheyhavesynchronizedwitheach
otheragain,afteraccumulatingenoughgradientsforasingleoptimizationstep.
Asynchronousstochasticgradientdescentoptimization
AsynchronousstochasticgradientdescentoptimizationmethodscanalsobeemployedwhenperformingmodeloptimizationovermultipleGPUs.
www.wandb.ai?contact@wandb.ai7
·······weights&Biases
Thismethodusessmallsubsets(microbatches)ofdatafrom
eachnodeinsteadofloadingalldataatonce,whichhelpsreducememoryrequirementswhilestillallowingforfastconvergenceratesduetoitsasynchronousnature.Itworkslikethis:
?First,wefetchthemostup-to-dateparametersofthe
modelneededtoprocessthecurrentmini-batchfromtheparameterservers.
?Wethencomputegradientsofthelosswithrespecttotheseparameter
?Finally,thesegradientsaresentbacktotheparameterservers,whichthenupdatesthemodelaccordingly.
Micro-batching
Micro-batchingcombinessmallmini-batchesintolargeronessothatmorebatchescanbeprocessedinlesstimeandwithfewersynchronizationpointsbetweendevicesduringbackpropagationoperations.Ithasbecomeincreasinglypopularfortraining
verylargemodelsacrossmanyGPUsduetoitsabilitytoreducememoryconsumptionandimprovescalability.Overall,micro-
batchingisaneffectivewaytoleveragedistributeddeeplearningtechniqueswhendealingwithverylargedatasetsormodelsthatrequiresignificantamountsofprocessingpower.
Nowthatwe’vegonethroughscaling,hardware,andsome
techniquesforparallelizingyourtrainingruns,let’slookatwhatyourLLMwillactuallylearnfrom:data.
DATASETCOLLECTION
Baddataleadstobadmodels.Butcarefulprocessingofhigh-quality,high-volume,diversedatasetsdirectly
contributestomodelperformanceindownstreamtasksaswellasmodelconvergence.
DatasetdiversityisespeciallyimportantforLLMs.That’sbecausediversityimprovesthecross-domainknowledgeofthemodel,
aswellasitsdownstreamgeneralizationcapability.TrainingondiverseexampleseffectivelybroadenstheabilityofyourLLMtoperformwellonmyriadnuancedtasks.
Atypicaltrainingdatasetiscomprisedoftextualdatafrom
diversesources,suchascrawledpublicdata,onlinepublicationorbookrepositories,codedatafromGitHub,Wikipedia,news,socialmediaconversations,etc.
Forexample,considerThePile
.ThePileisapopulartextcorpuscreatedbyEleutherAIforlarge-scalelanguagemodeling.It
containsdatafrom22datasources,coarselybrokendownintofivebroadcategories:
?AcademicWriting:PubMedAbstractsandPubMedCentral,arXiv,FreeLaw,USPTOBackgrounds,PhilPapers,NIH
Exporter
?OnlineorScrapedResources:CommonCrawl,OpenWebText2,StackExchange,Wikipedia
?Prose:BookCorpus2,Bibliotik,ProjectGutenberg
?Dialog:YouTubesubtitles,UbuntuIRC,OpenSubtitles,HackerNews,Europarl
?Miscellaneous:GitHub,theDeepMindMathematicsdataset,Enronemails
NotethatThePiledatasetisoneoftheveryfewlarge-scale
textdatasetsthatisfreeforthepublic.FormostoftheexistingmodelslikeGPT-3,PaLM,andGalactica,theirtrainingand
evaluationdatasetsarenotpubliclyavailable.Giventhelargescaleeffortittakestocompileandpre-processthesedatasetsforLLMtraining,mostcompanieshavekeptthemin-house
tomaintaincompetitiveadvantage.ThatmakesdatasetslikeThePileandafewdatasetsfromAllenAIextremelyvaluableforpubliclarge-scaleNLPresearchpurposes.
Anotherthingworthmentioningisthat,duringdataset
collection,generaldatacanbecollectedbynon-expertsbut
dataforspecificdomainsnormallyne
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025標準個人店面租賃合同
- 中國第二十冶金建設公司綜合學校高中分校高中歷史四導學案:俄國無產階級革命的導師列寧
- 電力建設臨時工合同協議
- 電子挖機轉讓合同協議
- 電商房間出租合同協議
- 電池使用安全合同協議
- 白酒銷售訂購合同協議
- 電動機銷售合同協議
- 電商入股開店合同協議
- 電力線路租賃合同協議
- 浴池出兌合同協議
- 2025年遼寧能源控股集團所屬鐵法能源公司招聘筆試參考題庫含答案解析
- 跨境物流部門管理制度
- 【MOOC】工程材料學-華中科技大學 中國大學慕課MOOC答案
- 自動化立體倉庫倉儲項目可行性研究報告
- 行政復議法-形考作業1-國開(ZJ)-參考資料
- 煤礦安全規程執行說明
- 銀證合作產品營銷手冊
- 現澆重力式鋼筋混凝土擋土墻
- 控制體重對降低巨大兒發生率的臨床研究
- 攝影美學PPT課件
評論
0/150
提交評論