廣東省珠海市普通高中2025屆高三第五次模擬考試數學試卷含解析_第1頁
廣東省珠海市普通高中2025屆高三第五次模擬考試數學試卷含解析_第2頁
廣東省珠海市普通高中2025屆高三第五次模擬考試數學試卷含解析_第3頁
廣東省珠海市普通高中2025屆高三第五次模擬考試數學試卷含解析_第4頁
廣東省珠海市普通高中2025屆高三第五次模擬考試數學試卷含解析_第5頁
已閱讀5頁,還剩18頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

廣東省珠海市普通高中2025屆高三第五次模擬考試數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.設是等差數列,且公差不為零,其前項和為.則“,”是“為遞增數列”的()A.充分而不必要條件 B.必要而不充分條件C.充分必要條件 D.既不充分也不必要條件2.已知拋物線的焦點為,若拋物線上的點關于直線對稱的點恰好在射線上,則直線被截得的弦長為()A. B. C. D.3.某幾何體的三視圖如圖所示,則該幾何體的最長棱的長為()A. B. C. D.4.某設備使用年限x(年)與所支出的維修費用y(萬元)的統計數據分別為,,,,由最小二乘法得到回歸直線方程為,若計劃維修費用超過15萬元將該設備報廢,則該設備的使用年限為()A.8年 B.9年 C.10年 D.11年5.已知數列滿足,且成等比數列.若的前n項和為,則的最小值為()A. B. C. D.6.據國家統計局發布的數據,2019年11月全國CPI(居民消費價格指數),同比上漲4.5%,CPI上漲的主要因素是豬肉價格的上漲,豬肉加上其他畜肉影響CPI上漲3.27個百分點.下圖是2019年11月CPI一籃子商品權重,根據該圖,下列結論錯誤的是()A.CPI一籃子商品中所占權重最大的是居住B.CPI一籃子商品中吃穿住所占權重超過50%C.豬肉在CPI一籃子商品中所占權重約為2.5%D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為0.18%7.已知復數滿足,其中是虛數單位,則復數在復平面中對應的點到原點的距離為()A. B. C. D.8.已知直線,,則“”是“”的A.充分不必要條件 B.必要不充分條件C.充分必要條件 D.既不充分也不必要條件9.設函數(,)是上的奇函數,若的圖象關于直線對稱,且在區間上是單調函數,則()A. B. C. D.10.設、是兩條不同的直線,、是兩個不同的平面,則的一個充分條件是()A.且 B.且 C.且 D.且11.設是虛數單位,則“復數為純虛數”是“”的()A.充要條件 B.必要不充分條件C.既不充分也不必要條件 D.充分不必要條件12.《九章算術》中記載,塹堵是底面為直角三角形的直三棱柱,陽馬指底面為矩形,一側棱垂直于底面的四棱錐.如圖,在塹堵中,,,當陽馬體積的最大值為時,塹堵的外接球的體積為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知二項式ax-1x6的展開式中的常數項為-16014.已知x,y>0,且,則x+y的最小值為_____.15.如圖,在直四棱柱中,底面是平行四邊形,點是棱的中點,點是棱靠近的三等分點,且三棱錐的體積為2,則四棱柱的體積為______.16.已知復數對應的點位于第二象限,則實數的范圍為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)如圖,三棱柱中,側面是菱形,其對角線的交點為,且.(1)求證:平面;(2)設,若直線與平面所成的角為,求二面角的正弦值.18.(12分)已知,均為給定的大于1的自然數,設集合,.(Ⅰ)當,時,用列舉法表示集合;(Ⅱ)當時,,且集合滿足下列條件:①對任意,;②.證明:(ⅰ)若,則(集合為集合在集合中的補集);(ⅱ)為一個定值(不必求出此定值);(Ⅲ)設,,,其中,,若,則.19.(12分)在新中國成立70周年國慶閱兵慶典中,眾多群眾在臉上貼著一顆紅心,以此表達對祖國的熱愛之情,在數學中,有多種方程都可以表示心型曲線,其中有著名的笛卡爾心型曲線,如圖,在直角坐標系中,以原點O為極點,x軸正半軸為極軸建立極坐標系.圖中的曲線就是笛卡爾心型曲線,其極坐標方程為(),M為該曲線上的任意一點.(1)當時,求M點的極坐標;(2)將射線OM繞原點O逆時針旋轉與該曲線相交于點N,求的最大值.20.(12分)某芯片公司對今年新開發的一批5G手機芯片進行測評,該公司隨機調查了100顆芯片,并將所得統計數據分為五個小組(所調查的芯片得分均在內),得到如圖所示的頻率分布直方圖,其中.(1)求這100顆芯片評測分數的平均數(同一組中的每個數據可用該組區間的中點值代替).(2)芯片公司另選100顆芯片交付給某手機公司進行測試,該手機公司將每顆芯片分別裝在3個工程手機中進行初測。若3個工程手機的評分都達到11萬分,則認定該芯片合格;若3個工程手機中只要有2個評分沒達到11萬分,則認定該芯片不合格;若3個工程手機中僅1個評分沒有達到11萬分,則將該芯片再分別置于另外2個工程手機中進行二測,二測時,2個工程手機的評分都達到11萬分,則認定該芯片合格;2個工程手機中只要有1個評分沒達到11萬分,手機公司將認定該芯片不合格.已知每顆芯片在各次置于工程手機中的得分相互獨立,并且芯片公司對芯片的評分方法及標準與手機公司對芯片的評分方法及標準都一致(以頻率作為概率).每顆芯片置于一個工程手機中的測試費用均為300元,每顆芯片若被認定為合格或不合格,將不再進行后續測試,現手機公司測試部門預算的測試經費為10萬元,試問預算經費是否足夠測試完這100顆芯片?請說明理由.21.(12分)如圖,在四邊形ABCD中,AB//CD,∠ABD=30°,AB=2CD=2AD=2,DE⊥平面ABCD,EF//BD,且BD=2EF.(Ⅰ)求證:平面ADE⊥平面BDEF;(Ⅱ)若二面角CBFD的大小為60°,求CF與平面ABCD所成角的正弦值.22.(10分)設點,分別是橢圓的左、右焦點,為橢圓上任意一點,且的最小值為1.(1)求橢圓的方程;(2)如圖,動直線與橢圓有且僅有一個公共點,點,是直線上的兩點,且,,求四邊形面積的最大值.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、A【解析】

根據等差數列的前項和公式以及充分條件和必要條件的定義進行判斷即可.【詳解】是等差數列,且公差不為零,其前項和為,充分性:,則對任意的恒成立,則,,若,則數列為單調遞減數列,則必存在,使得當時,,則,不合乎題意;若,由且數列為單調遞增數列,則對任意的,,合乎題意.所以,“,”“為遞增數列”;必要性:設,當時,,此時,,但數列是遞增數列.所以,“,”“為遞增數列”.因此,“,”是“為遞增數列”的充分而不必要條件.故選:A.【點睛】本題主要考查充分條件和必要條件的判斷,結合等差數列的前項和公式是解決本題的關鍵,屬于中等題.2、B【解析】

由焦點得拋物線方程,設點的坐標為,根據對稱可求出點的坐標,寫出直線方程,聯立拋物線求交點,計算弦長即可.【詳解】拋物線的焦點為,則,即,設點的坐標為,點的坐標為,如圖:∴,解得,或(舍去),∴∴直線的方程為,設直線與拋物線的另一個交點為,由,解得或,∴,∴,故直線被截得的弦長為.故選:B.【點睛】本題主要考查了拋物線的標準方程,簡單幾何性質,點關于直線對稱,屬于中檔題.3、D【解析】

先根據三視圖還原幾何體是一個四棱錐,根據三視圖的數據,計算各棱的長度.【詳解】根據三視圖可知,幾何體是一個四棱錐,如圖所示:由三視圖知:,所以,所以,所以該幾何體的最長棱的長為故選:D【點睛】本題主要考查三視圖的應用,還考查了空間想象和運算求解的能力,屬于中檔題.4、D【解析】

根據樣本中心點在回歸直線上,求出,求解,即可求出答案.【詳解】依題意在回歸直線上,,由,估計第年維修費用超過15萬元.故選:D.【點睛】本題考查回歸直線過樣本中心點、以及回歸方程的應用,屬于基礎題.5、D【解析】

利用等比中項性質可得等差數列的首項,進而求得,再利用二次函數的性質,可得當或時,取到最小值.【詳解】根據題意,可知為等差數列,公差,由成等比數列,可得,∴,解得.∴.根據單調性,可知當或時,取到最小值,最小值為.故選:D.【點睛】本題考查等差數列通項公式、等比中項性質、等差數列前項和的最值,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力和運算求解能力,求解時注意當或時同時取到最值.6、D【解析】

A.從第一個圖觀察居住占23%,與其他比較即可.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,再判斷.C.食品占19.9%,再看第二個圖,分清2.5%是在CPI一籃子商品中,還是在食品中即可.D.易知豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%.【詳解】A.CPI一籃子商品中居住占23%,所占權重最大的,故正確.B.CPI一籃子商品中吃穿住所占23%+8%+19.9%=50.9%,權重超過50%,故正確.C.食品占中19.9%,分解后后可知豬肉是占在CPI一籃子商品中所占權重約為2.5%,故正確.D.豬肉與其他畜肉在CPI一籃子商品中所占權重約為2.1%+2.5%=4.6%,故錯誤.故選:D【點睛】本題主要考查統計圖的識別與應用,還考查了理解辨析的能力,屬于基礎題.7、B【解析】

利用復數的除法運算化簡z,復數在復平面中對應的點到原點的距離為利用模長公式即得解.【詳解】由題意知復數在復平面中對應的點到原點的距離為故選:B【點睛】本題考查了復數的除法運算,模長公式和幾何意義,考查了學生概念理解,數學運算,數形結合的能力,屬于基礎題.8、C【解析】

先得出兩直線平行的充要條件,根據小范圍可推導出大范圍,可得到答案.【詳解】直線,,的充要條件是,當a=2時,化簡后發現兩直線是重合的,故舍去,最終a=-1.因此得到“”是“”的充分必要條件.故答案為C.【點睛】判斷充要條件的方法是:①若p?q為真命題且q?p為假命題,則命題p是命題q的充分不必要條件;②若p?q為假命題且q?p為真命題,則命題p是命題q的必要不充分條件;③若p?q為真命題且q?p為真命題,則命題p是命題q的充要條件;④若p?q為假命題且q?p為假命題,則命題p是命題q的即不充分也不必要條件.⑤判斷命題p與命題q所表示的范圍,再根據“誰大誰必要,誰小誰充分”的原則,判斷命題p與命題q的關系.9、D【解析】

根據函數為上的奇函數可得,由函數的對稱軸及單調性即可確定的值,進而確定函數的解析式,即可求得的值.【詳解】函數(,)是上的奇函數,則,所以.又的圖象關于直線對稱可得,,即,,由函數的單調區間知,,即,綜上,則,.故選:D【點睛】本題考查了三角函數的圖象與性質的綜合應用,由對稱軸、奇偶性及單調性確定參數,屬于中檔題.10、B【解析】由且可得,故選B.11、D【解析】

結合純虛數的概念,可得,再結合充分條件和必要條件的定義即可判定選項.【詳解】若復數為純虛數,則,所以,若,不妨設,此時復數,不是純虛數,所以“復數為純虛數”是“”的充分不必要條件.故選:D【點睛】本題考查充分條件和必要條件,考查了純虛數的概念,理解充分必要條件的邏輯關系是解題的關鍵,屬于基礎題.12、B【解析】

利用均值不等式可得,即可求得,進而求得外接球的半徑,即可求解.【詳解】由題意易得平面,所以,當且僅當時等號成立,又陽馬體積的最大值為,所以,所以塹堵的外接球的半徑,所以外接球的體積,故選:B【點睛】本題以中國傳統文化為背景,考查四棱錐的體積、直三棱柱的外接球的體積、基本不等式的應用,體現了數學運算、直觀想象等核心素養.二、填空題:本題共4小題,每小題5分,共20分。13、2【解析】

在二項展開式的通項公式中,令x的冪指數等于0,求出r的值,即可求得常數項,再根據常數項等于-160求得實數a的值.【詳解】∵二項式(ax-1x)令6-2r=0,求得r=3,可得常數項為-C63故答案為:2.【點睛】本題主要考查二項式定理的應用,二項展開式的通項公式,二項式系數的性質,屬于基礎題.14、1【解析】

處理變形x+y=x()+y結合均值不等式求解最值.【詳解】x,y>0,且,則x+y=x()+y1,當且僅當時取等號,此時x=4,y=2,取得最小值1.故答案為:1【點睛】此題考查利用均值不等式求解最值,關鍵在于熟練掌握均值不等式的適用條件,注意考慮等號成立的條件.15、12【解析】

由題意,設底面平行四邊形的,且邊上的高為,直四棱柱的高為,分別表示出直四棱柱的體積和三棱錐的體積,即可求解。【詳解】由題意,設底面平行四邊形的,且邊上的高為,直四棱柱的高為,則直四棱柱的體積為,又由三棱錐的體積為,解得,即直四棱柱的體積為。【點睛】本題主要考查了棱柱與棱錐的體積的計算問題,其中解答中正確認識幾何體的結構特征,合理、恰當地表示直四棱柱三棱錐的體積是解答本題的關鍵,著重考查了推理與運算能力,以及空間想象能力,屬于中檔試題。16、【解析】

由復數對應的點,在第二象限,得,且,從而求出實數的范圍.【詳解】解:∵復數對應的點位于第二象限,∴,且,∴,故答案為:.【點睛】本題主要考查復數與復平面內對應點之間的關系,解不等式,且是解題的關鍵,屬于基礎題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2).【解析】

(1)根據菱形的特征和題中條件得到平面,結合線面垂直的定義和判定定理即可證明;

2建立空間直角坐標系,利用向量知識求解即可.【詳解】(1)證明:∵四邊形是菱形,,平面平面,又是的中點,,又平面(2)∴直線與平面所成的角等于直線與平面所成的角.平面,∴直線與平面所成的角為,即.因為,則在等腰直角三角形中,所以.在中,由得,以為原點,分別以為軸建立空間直角坐標系.則所以設平面的一個法向量為,則,可得,取平面的一個法向量為,則,所以二面角的正弦值的大小為.(注:問題(2)可以轉化為求二面角的正弦值,求出后,在中,過點作的垂線,垂足為,連接,則就是所求二面角平面角的補角,先求出,再求出,最后在中求出.)【點睛】本題主要考查了線面垂直的判定以及二面角的求解,屬于中檔題.18、(Ⅰ);(Ⅱ)(ⅰ)詳見解析.(ⅱ)詳見解析.(Ⅲ)詳見解析.【解析】

(Ⅰ)當,時,,,,,,.即可得出.(Ⅱ)(i)當時,,2,3,,,又,,,,,,必然有,否則得出矛盾.(ii)由.可得.又,即可得出為定值.(iii)由設,,,,其中,,,2,,.,可得,通過求和即可證明結論.【詳解】(Ⅰ)解:當,時,,,,,..(Ⅱ)證明:(i)當時,,2,3,,,又,,,,,,必然有,否則,而,與已知對任意,矛盾.因此有.(ii)..,為定值.(iii)由設,,,,其中,,,2,,.,..【點睛】本題主要考查等差數列與等比數列的通項公式求和公式,考查了推理能力與計算能力,屬于難題.19、(1)點M的極坐標為或(2)【解析】

(1)令,由此求得的值,進而求得點的極坐標.(2)設出兩點的極坐標,利用勾股定理求得的表達式,利用三角函數最值的求法,求得的最大值.【詳解】(1)設點M在極坐標系中的坐標,由,得,∵∴或,所以點M的極坐標為或(2)由題意可設,.由,得,.故時,的最大值為.【點睛】本小題主要考查極坐標的求法,考查極坐標下兩點間距離的計算以及距離最值的求法,屬于中檔題.20、(1)(2)預算經費不夠測試完這100顆芯片,理由見解析【解析】

(1)先求出,再利用頻率分布直方圖的平均數公式求這100顆芯片評測分數的平均數;(2)先求出每顆芯片的測試費用的數學期望,再比較得解.【詳解】(1)依題意,,故.又因為.所以,所求平均數為(萬分)(2)由題意可知,手機公司抽取一顆芯片置于一個工程機中進行檢測評分達到11萬分的概率.設每顆芯片的測試費用為X元,則X的可能取值為600,900,1200,1500,,,故每顆芯片的測試費用的數學期望為(元),因為,所以顯然預算經費不夠測試完這100顆芯片.【點睛】本題主要考查頻率分布直方圖的平均數的計算,考查離散型隨機變量的數學期望的計算,意在考查學生對這些知識的理解掌握水平.21、(1)見解析(2)【解析】分析:(1)根據面面垂直的判定定理即可證明平面ADE⊥平面BDEF;(2)建立空間直角坐標系,利用空間向量法即可求CF與平面ABCD所成角的正弦值;也可以應用常規法,作出線面角,放在三角形當中來求解.詳解:(Ⅰ)在△ABD中,∠ABD=30°,由AO2=AB2+BD2-2AB·BDcos30°,解得BD=,所以AB2+BD2=AB2,根據勾股定理得∠ADB=90°∴AD⊥BD.又因為DE⊥平面ABCD,AD平面ABCD,∴AD⊥DE.又因為BDDE=D,所以AD⊥平面BDEF,又AD平面ABCD,∴平面ADE⊥平面BDEF,(Ⅱ)方法一:如圖,由已知可得,,則,則三角形BCD為銳角為30°的等腰三角形.則.過點C做,交DB、AB于點G,H,則點G為點F在面ABCD上的投影.連接FG,則,DE⊥平面ABCD,則平面.過G做于點I,則BF平面,即角為二面角CBFD的平面角,則60°.則,,則.在直角梯形BDEF中,G為BD中點,,,

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論