




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
西藏拉薩市那曲二高2025屆高考沖刺押題(最后一卷)數學試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知,其中是虛數單位,則對應的點的坐標為()A. B. C. D.2.已知,函數在區間內沒有最值,給出下列四個結論:①在上單調遞增;②③在上沒有零點;④在上只有一個零點.其中所有正確結論的編號是()A.②④ B.①③ C.②③ D.①②④3.設a=log73,,c=30.7,則a,b,c的大小關系是()A. B. C. D.4.已知符號函數sgnxf(x)是定義在R上的減函數,g(x)=f(x)﹣f(ax)(a>1),則()A.sgn[g(x)]=sgnx B.sgn[g(x)]=﹣sgnxC.sgn[g(x)]=sgn[f(x)] D.sgn[g(x)]=﹣sgn[f(x)]5.已知向量與的夾角為,定義為與的“向量積”,且是一個向量,它的長度,若,,則()A. B.C.6 D.6.在直角中,,,,若,則()A. B. C. D.7.的二項展開式中,的系數是()A.70 B.-70 C.28 D.-288.執行如圖所示的程序框圖,輸出的結果為()A. B.4 C. D.9.若復數是純虛數,則()A.3 B.5 C. D.10.函數在上的大致圖象是()A. B.C. D.11.已知橢圓:的左、右焦點分別為,,過的直線與軸交于點,線段與交于點.若,則的方程為()A. B. C. D.12.在菱形中,,,,分別為,的中點,則()A. B. C.5 D.二、填空題:本題共4小題,每小題5分,共20分。13.已知向量,且,則___________.14.平面區域的外接圓的方程是____________.15.某同學周末通過拋硬幣的方式決定出去看電影還是在家學習,拋一枚硬幣兩次,若兩次都是正面朝上,就在家學習,否則出去看電影,則該同學在家學習的概率為____________.16.二項式的展開式中項的系數為_____.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知在四棱錐中,平面,,在四邊形中,,,,為的中點,連接,為的中點,連接.(1)求證:.(2)求二面角的余弦值.18.(12分)如圖,在直三棱柱中,,點P,Q分別為,的中點.求證:(1)PQ平面;(2)平面.19.(12分)某校為了解校園安全教育系列活動的成效,對全校學生進行一次安全意識測試,根據測試成績評定“合格”、“不合格”兩個等級,同時對相應等級進行量化:“合格”記分,“不合格”記分.現隨機抽取部分學生的成績,統計結果及對應的頻率分布直方圖如下所示:等級不合格合格得分頻數624(Ⅰ)若測試的同學中,分數段內女生的人數分別為,完成列聯表,并判斷:是否有以上的把握認為性別與安全意識有關?是否合格性別不合格合格總計男生女生總計(Ⅱ)用分層抽樣的方法,從評定等級為“合格”和“不合格”的學生中,共選取人進行座談,現再從這人中任選人,記所選人的量化總分為,求的分布列及數學期望;(Ⅲ)某評估機構以指標(,其中表示的方差)來評估該校安全教育活動的成效,若,則認定教育活動是有效的;否則認定教育活動無效,應調整安全教育方案.在(Ⅱ)的條件下,判斷該校是否應調整安全教育方案?附表及公式:,其中.20.(12分)某工廠的機器上有一種易損元件A,這種元件在使用過程中發生損壞時,需要送維修處維修.工廠規定當日損壞的元件A在次日早上8:30之前送到維修處,并要求維修人員當日必須完成所有損壞元件A的維修工作.每個工人獨立維修A元件需要時間相同.維修處記錄了某月從1日到20日每天維修元件A的個數,具體數據如下表:日期1日2日3日4日5日6日7日8日9日10日元件A個數91512181218992412日期11日12日13日14日15日16日17日18日19日20日元件A個數12241515151215151524從這20天中隨機選取一天,隨機變量X表示在維修處該天元件A的維修個數.(Ⅰ)求X的分布列與數學期望;(Ⅱ)若a,b,且b-a=6,求最大值;(Ⅲ)目前維修處有兩名工人從事維修工作,為使每個維修工人每天維修元件A的個數的數學期望不超過4個,至少需要增加幾名維修工人?(只需寫出結論)21.(12分)新型冠狀病毒肺炎疫情發生以來,電子購物平臺成為人們的熱門選擇.為提高市場銷售業績,某公司設計了一套產品促銷方案,并在某地區部分營銷網點進行試點.運作一年后,對“采用促銷”和“沒有采用促銷”的營銷網點各選取了50個,對比上一年度的銷售情況,分別統計了它們的年銷售總額,并按年銷售總額增長的百分點分成5組:,分別統計后制成如圖所示的頻率分布直方圖,并規定年銷售總額增長10個百分點及以上的營銷網點為“精英店”.(1)請你根據題中信息填充下面的列聯表,并判斷是否有的把握認為“精英店與采用促銷活動有關”;采用促銷沒有采用促銷合計精英店非精英店合計5050100(2)某“精英店”為了創造更大的利潤,通過分析上一年度的售價(單位:元)和日銷量(單位:件)的一組數據后決定選擇作為回歸模型進行擬合.具體數據如下表,表中的:①根據上表數據計算的值;②已知該公司成本為10元/件,促銷費用平均5元/件,根據所求出的回歸模型,分析售價定為多少時日利潤可以達到最大.附①:附②:對應一組數據,其回歸直線的斜率和截距的最小二乘法估計分別為.22.(10分)在國家“大眾創業,萬眾創新”戰略下,某企業決定加大對某種產品的研發投入.為了對新研發的產品進行合理定價,將該產品按事先擬定的價格試銷,得到一組檢測數據如表所示:試銷價格(元)產品銷量(件)已知變量且有線性負相關關系,現有甲、乙、丙三位同學通過計算求得回歸直線方程分別為:甲;乙;丙,其中有且僅有一位同學的計算結果是正確的.(1)試判斷誰的計算結果正確?(2)若由線性回歸方程得到的估計數據與檢測數據的誤差不超過,則稱該檢測數據是“理想數據”,現從檢測數據中隨機抽取個,求“理想數據”的個數為的概率.
參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】
利用復數相等的條件求得,,則答案可求.【詳解】由,得,.對應的點的坐標為,,.故選:.【點睛】本題考查復數的代數表示法及其幾何意義,考查復數相等的條件,是基礎題.2、A【解析】
先根據函數在區間內沒有最值求出或.再根據已知求出,判斷函數的單調性和零點情況得解.【詳解】因為函數在區間內沒有最值.所以,或解得或.又,所以.令.可得.且在上單調遞減.當時,,且,所以在上只有一個零點.所以正確結論的編號②④故選:A.【點睛】本題主要考查三角函數的圖象和性質,考查函數的零點問題,意在考查學生對這些知識的理解掌握水平.3、D【解析】
,,得解.【詳解】,,,所以,故選D【點睛】比較不同數的大小,找中間量作比較是一種常見的方法.4、A【解析】
根據符號函數的解析式,結合f(x)的單調性分析即可得解.【詳解】根據題意,g(x)=f(x)﹣f(ax),而f(x)是R上的減函數,當x>0時,x<ax,則有f(x)>f(ax),則g(x)=f(x)﹣f(ax)>0,此時sgn[g(x)]=1,當x=0時,x=ax,則有f(x)=f(ax),則g(x)=f(x)﹣f(ax)=0,此時sgn[g(x)]=0,當x<0時,x>ax,則有f(x)<f(ax),則g(x)=f(x)﹣f(ax)<0,此時sgn[g(x)]=﹣1,綜合有:sgn[g(x)]=sgn(x);故選:A.【點睛】此題考查函數新定義問題,涉及函數單調性辨析,關鍵在于讀懂定義,根據自變量的取值范圍分類討論.5、D【解析】
先根據向量坐標運算求出和,進而求出,代入題中給的定義即可求解.【詳解】由題意,則,,得,由定義知,故選:D.【點睛】此題考查向量的坐標運算,引入新定義,屬于簡單題目.6、C【解析】
在直角三角形ABC中,求得,再由向量的加減運算,運用平面向量基本定理,結合向量數量積的定義和性質:向量的平方即為模的平方,化簡計算即可得到所求值.【詳解】在直角中,,,,,
,
若,則故選C.【點睛】本題考查向量的加減運算和數量積的定義和性質,主要是向量的平方即為模的平方,考查運算能力,屬于中檔題.7、A【解析】試題分析:由題意得,二項展開式的通項為,令,所以的系數是,故選A.考點:二項式定理的應用.8、A【解析】
模擬執行程序框圖,依次寫出每次循環得到的的值,當,,退出循環,輸出結果.【詳解】程序運行過程如下:,;,;,;,;,;,;,,退出循環,輸出結果為,故選:A.【點睛】該題考查的是有關程序框圖的問題,涉及到的知識點有判斷程序框圖輸出結果,屬于基礎題目.9、C【解析】
先由已知,求出,進一步可得,再利用復數模的運算即可【詳解】由z是純虛數,得且,所以,.因此,.故選:C.【點睛】本題考查復數的除法、復數模的運算,考查學生的運算能力,是一道基礎題.10、D【解析】
討論的取值范圍,然后對函數進行求導,利用導數的幾何意義即可判斷.【詳解】當時,,則,所以函數在上單調遞增,令,則,根據三角函數的性質,當時,,故切線的斜率變小,當時,,故切線的斜率變大,可排除A、B;當時,,則,所以函數在上單調遞增,令,,當時,,故切線的斜率變大,當時,,故切線的斜率變小,可排除C,故選:D【點睛】本題考查了識別函數的圖像,考查了導數與函數單調性的關系以及導數的幾何意義,屬于中檔題.11、D【解析】
由題可得,所以,又,所以,得,故可得橢圓的方程.【詳解】由題可得,所以,又,所以,得,,所以橢圓的方程為.故選:D【點睛】本題主要考查了橢圓的定義,橢圓標準方程的求解.12、B【解析】
據題意以菱形對角線交點為坐標原點建立平面直角坐標系,用坐標表示出,再根據坐標形式下向量的數量積運算計算出結果.【詳解】設與交于點,以為原點,的方向為軸,的方向為軸,建立直角坐標系,則,,,,,所以.故選:B.【點睛】本題考查建立平面直角坐標系解決向量的數量積問題,難度一般.長方形、正方形、菱形中的向量數量積問題,如果直接計算較麻煩可考慮用建系的方法求解.二、填空題:本題共4小題,每小題5分,共20分。13、【解析】
由向量平行的坐標表示得出,求解即可得出答案.【詳解】因為,所以,解得.故答案為:【點睛】本題主要考查了由向量共線或平行求參數,屬于基礎題.14、【解析】
作出平面區域,可知平面區域為三角形,求出三角形的三個頂點坐標,設三角形的外接圓方程為,將三角形三個頂點坐標代入圓的一般方程,求出、、的值,即可得出所求圓的方程.【詳解】作出不等式組所表示的平面區域如下圖所示:由圖可知,平面區域為,聯立,解得,則點,同理可得點、,設的外接圓方程為,由題意可得,解得,,,因此,所求圓的方程為.故答案為:.【點睛】本題考查三角形外接圓方程的求解,同時也考查了一元二次不等式組所表示的平面區域的求作,考查數形結合思想以及運算求解能力,屬于中等題.15、【解析】
采用列舉法計算古典概型的概率.【詳解】拋擲一枚硬幣兩次共有4種情況,即(正,正),(正,反),(反,正),(反,反),在家學習只有1種情況,即(正,正),故該同學在家學習的概率為.故答案為:【點睛】本題考查古典概型的概率計算,考查學生的基本計算能力,是一道基礎題.16、15【解析】
由題得,,令,解得,代入可得展開式中含x6項的系數.【詳解】由題得,,令,解得,所以二項式的展開式中項的系數為.故答案為:15【點睛】本題主要考查了二項式定理的應用,考查了利用通項公式去求展開式中某項的系數問題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1)見解析;(2)【解析】
(1)連接,證明,得到面,得到證明.(2)以,,所在直線分別為,,軸建立空間直角坐標系,為平面的法向量,平面的一個法向量為,計算夾角得到答案.【詳解】(1)連接,在四邊形中,,平面,面,,,面,又面,,又在直角三角形中,,為的中點,,,面,面,.(2)以,,所在直線分別為,,軸建立空間直角坐標系,,,,,,,設為平面的法向量,,,,,令,則,,,同理可得平面的一個法向量為.設向量與的所成的角為,,由圖形知,二面角為銳二面角,所以余弦值為.【點睛】本題考查了線線垂直,二面角,意在考查學生的計算能力和空間想象能力.18、(1)見解析(2)見解析【解析】
(1)取的中點D,連結,.根據線面平行的判定定理即得;(2)先證,,和都是平面內的直線且交于點,由(1)得,再結合線面垂直的判定定理即得.【詳解】(1)取的中點D,連結,.在中,P,D分別為,中點,,且.在直三棱柱中,,.Q為棱的中點,,且.,.四邊形為平行四邊形,從而.又平面,平面,平面.(2)在直三棱柱中,平面.又平面,.,D為中點,.由(1)知,,.又,平面,平面,平面.【點睛】本題考查線面平行的判定定理,以及線面垂直的判定定理,難度不大.19、(Ⅰ)詳見解析;(Ⅱ)詳見解析;(Ⅲ)不需要調整安全教育方案.【解析】
(I)根據題目所給數據填寫好列聯表,計算出的值,由此判斷出在犯錯誤概率不超過的前提下,不能認為性別與安全測試是否合格有關.(II)利用超幾何分布的計算公式,計算出的分布列并求得數學期望.(III)由(II)中數據,計算出,進而求得的值,從而得出該校的安全教育活動是有效的,不需要調整安全教育方案.【詳解】解:(Ⅰ)由頻率分布直方圖可知,得分在的頻率為,故抽取的學生答卷總數為,.性別與合格情況的列聯表為:是否合格性別不合格合格小計男生女生小計即在犯錯誤概率不超過的前提下,不能認為性別與安全測試是否合格有關.(Ⅱ)“不合格”和“合格”的人數比例為,因此抽取的人中“不合格”有人,“合格”有人,所以可能的取值為,.的分布列為:20151050所以.(Ⅲ)由(Ⅱ)知:.故我們認為該校的安全教育活動是有效的,不需要調整安全教育方案.【點睛】本小題主要考查列聯表獨立性檢驗,考查超幾何分布的分布列、數學期望和方差的計算,所以中檔題.20、(Ⅰ)分布列見解析,;(Ⅱ);(Ⅲ)至少增加2人.【解析】
(Ⅰ)求出X的所有可能取值為9,12,15,18,24,求出概率,得到X的分布列,然后求解期望即可.(Ⅱ)當P(a≤X≤b)取到最大值時,求出a,b的可能值,然后求解P(a≤X≤b)的最大值即可.(Ⅲ)利用前兩問的結果,判斷至少增加2人.【詳解】(Ⅰ)X的取值為:9,12,15,18,24;,,,,,X的分布列為:X912151824P故X的數學期望;(Ⅱ)當P(a≤X≤b)取到最大值時,a,b的值可能為:,或,或.經計算,,,所以P(a≤X≤b)的最大值為.(Ⅲ)至少增加2人.【點睛】本題考查離散型隨機變量及其分布列,離散型隨機變量的期望與方差,屬于中等題.21、(1)列聯表見解析,有把握;(2)①;②元時【解析】
(1)直接由題意列出列聯表,通過計算,可判斷精英店與采用促銷活動是否有
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025鹽城幼兒師范高等專科學校輔導員考試試題及答案
- 2025年廣東省深圳市十五校中考歷史二模試卷
- 新生兒正常生理特征及護理要點
- 換牙期衛生與保健
- 2025年游戲設計專業考試題及答案
- 環境科學與生態理論2025年考試試卷及答案
- 網絡工程師考試題及答案2025年
- 2025年物流與供應鏈管理職業能力考核試題及答案
- 2025年網絡教育與在線學習考試試卷及答案
- 2025年圖書館學基礎知識考試試題及答案
- 2015山東高考英語試題及答案
- GB/T 18964.2-2003塑料抗沖擊聚苯乙烯(PS-I)模塑和擠出材料第2部分:試樣制備和性能測定
- GA/T 1661-2019法醫學關節活動度檢驗規范
- 他達拉非課件
- 資料交接移交確認單
- 風對起飛和著陸影響及修正和風切變完整版課件
- 大數據時代的互聯網信息安全題庫
- DL∕T 1776-2017 電力系統用交流濾波電容器技術導則
- 浙江省紹興市上虞區2021-2022學年六年級下學期期末質量檢測英語試題(word版無答案無聽力音頻和原文)
- 護理體查操作評分標準
- 《交通調查與數據分析》課程教學大綱(本科)
評論
0/150
提交評論