2025屆安徽省合肥八中等高三六校第一次聯考數學試卷含解析_第1頁
2025屆安徽省合肥八中等高三六校第一次聯考數學試卷含解析_第2頁
2025屆安徽省合肥八中等高三六校第一次聯考數學試卷含解析_第3頁
2025屆安徽省合肥八中等高三六校第一次聯考數學試卷含解析_第4頁
2025屆安徽省合肥八中等高三六校第一次聯考數學試卷含解析_第5頁
已閱讀5頁,還剩14頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2025屆安徽省合肥八中等高三六校第一次聯考數學試卷注意事項:1.答題前,考生先將自己的姓名、準考證號碼填寫清楚,將條形碼準確粘貼在條形碼區域內。2.答題時請按要求用筆。3.請按照題號順序在答題卡各題目的答題區域內作答,超出答題區域書寫的答案無效;在草稿紙、試卷上答題無效。4.作圖可先使用鉛筆畫出,確定后必須用黑色字跡的簽字筆描黑。5.保持卡面清潔,不要折暴、不要弄破、弄皺,不準使用涂改液、修正帶、刮紙刀。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知函數,,若對任意的總有恒成立,記的最小值為,則最大值為()A.1 B. C. D.2.已知雙曲線的左,右焦點分別為,O為坐標原點,P為雙曲線在第一象限上的點,直線PO,分別交雙曲線C的左,右支于另一點,且,則雙曲線的離心率為()A. B.3 C.2 D.3.已知數列滿足:,則()A.16 B.25 C.28 D.334.甲、乙兩名學生的六次數學測驗成績(百分制)的莖葉圖如圖所示.①甲同學成績的中位數大于乙同學成績的中位數;②甲同學的平均分比乙同學的平均分高;③甲同學的平均分比乙同學的平均分低;④甲同學成績的方差小于乙同學成績的方差.以上說法正確的是()A.③④ B.①② C.②④ D.①③④5.從某市的中學生中隨機調查了部分男生,獲得了他們的身高數據,整理得到如下頻率分布直方圖:根據頻率分布直方圖,可知這部分男生的身高的中位數的估計值為A. B.C. D.6.某幾何體的三視圖如圖所示(單位:cm),則該幾何體的表面積是()A. B. C. D.7.已知集合.為自然數集,則下列表示不正確的是()A. B. C. D.8.若函數()的圖象過點,則()A.函數的值域是 B.點是的一個對稱中心C.函數的最小正周期是 D.直線是的一條對稱軸9.復數的虛部為()A. B. C.2 D.10.已知復數滿足:,則的共軛復數為()A. B. C. D.11.已知三棱錐且平面,其外接球體積為()A. B. C. D.12.函數(其中是自然對數的底數)的大致圖像為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.已知,若,則________.14.已知函數在點處的切線經過原點,函數的最小值為,則________.15.在中,角,,所對的邊分別邊,且,設角的角平分線交于點,則的值最小時,___.16.已知函數的部分圖象如圖所示,則的值為____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知的內角的對邊分別為,且.(Ⅰ)求;(Ⅱ)若的周長是否有最大值?如果有,求出這個最大值,如果沒有,請說明理由.18.(12分)在中,,.已知分別是的中點.將沿折起,使到的位置且二面角的大小是60°,連接,如圖:(1)證明:平面平面(2)求平面與平面所成二面角的大小.19.(12分)在平面直角坐標系中,曲線的參數方程是(為參數),以原點為極點,軸正半軸為極軸,建立極坐標系,直線的極坐標方程為.(Ⅰ)求曲線的普通方程與直線的直角坐標方程;(Ⅱ)已知直線與曲線交于,兩點,與軸交于點,求.20.(12分)[2018·石家莊一檢]已知函數.(1)若,求函數的圖像在點處的切線方程;(2)若函數有兩個極值點,,且,求證:.21.(12分)選修4-5:不等式選講已知函數.(1)設,求不等式的解集;(2)已知,且的最小值等于,求實數的值.22.(10分)已知函數,其中,為自然對數的底數.(1)當時,求函數的極值;(2)設函數的導函數為,求證:函數有且僅有一個零點.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、C【解析】

對任意的總有恒成立,因為,對恒成立,可得,令,可得,結合已知,即可求得答案.【詳解】對任意的總有恒成立,對恒成立,令,可得令,得當,當,,故令,得當時,當,當時,故選:C.【點睛】本題主要考查了根據不等式恒成立求最值問題,解題關鍵是掌握不等式恒成立的解法和導數求函數單調性的解法,考查了分析能力和計算能力,屬于難題.2、D【解析】

本道題結合雙曲線的性質以及余弦定理,建立關于a與c的等式,計算離心率,即可.【詳解】結合題意,繪圖,結合雙曲線性質可以得到PO=MO,而,結合四邊形對角線平分,可得四邊形為平行四邊形,結合,故對三角形運用余弦定理,得到,而結合,可得,,代入上式子中,得到,結合離心率滿足,即可得出,故選D.【點睛】本道題考查了余弦定理以及雙曲線的性質,難度偏難.3、C【解析】

依次遞推求出得解.【詳解】n=1時,,n=2時,,n=3時,,n=4時,,n=5時,.故選:C【點睛】本題主要考查遞推公式的應用,意在考查學生對這些知識的理解掌握水平.4、A【解析】

由莖葉圖中數據可求得中位數和平均數,即可判斷①②③,再根據數據集中程度判斷④.【詳解】由莖葉圖可得甲同學成績的中位數為,乙同學成績的中位數為,故①錯誤;,,則,故②錯誤,③正確;顯然甲同學的成績更集中,即波動性更小,所以方差更小,故④正確,故選:A【點睛】本題考查由莖葉圖分析數據特征,考查由莖葉圖求中位數、平均數.5、C【解析】

由題可得,解得,則,,所以這部分男生的身高的中位數的估計值為,故選C.6、D【解析】

根據三視圖判斷出幾何體為正四棱錐,由此計算出幾何體的表面積.【詳解】根據三視圖可知,該幾何體為正四棱錐.底面積為.側面的高為,所以側面積為.所以該幾何體的表面積是.故選:D【點睛】本小題主要考查由三視圖判斷原圖,考查錐體表面積的計算,屬于基礎題.7、D【解析】

集合.為自然數集,由此能求出結果.【詳解】解:集合.為自然數集,在A中,,正確;在B中,,正確;在C中,,正確;在D中,不是的子集,故D錯誤.故選:D.【點睛】本題考查命題真假的判斷、元素與集合的關系、集合與集合的關系等基礎知識,考查運算求解能力,是基礎題.8、A【解析】

根據函數的圖像過點,求出,可得,再利用余弦函數的圖像與性質,得出結論.【詳解】由函數()的圖象過點,可得,即,,,故,對于A,由,則,故A正確;對于B,當時,,故B錯誤;對于C,,故C錯誤;對于D,當時,,故D錯誤;故選:A【點睛】本題主要考查了二倍角的余弦公式、三角函數的圖像與性質,需熟記性質與公式,屬于基礎題.9、D【解析】

根據復數的除法運算,化簡出,即可得出虛部.【詳解】解:=,故虛部為-2.故選:D.【點睛】本題考查復數的除法運算和復數的概念.10、B【解析】

轉化,為,利用復數的除法化簡,即得解【詳解】復數滿足:所以故選:B【點睛】本題考查了復數的除法和復數的基本概念,考查了學生概念理解,數學運算的能力,屬于基礎題.11、A【解析】

由,平面,可將三棱錐還原成長方體,則三棱錐的外接球即為長方體的外接球,進而求解.【詳解】由題,因為,所以,設,則由,可得,解得,可將三棱錐還原成如圖所示的長方體,則三棱錐的外接球即為長方體的外接球,設外接球的半徑為,則,所以,所以外接球的體積.故選:A【點睛】本題考查三棱錐的外接球體積,考查空間想象能力.12、D【解析】由題意得,函數點定義域為且,所以定義域關于原點對稱,且,所以函數為奇函數,圖象關于原點對稱,故選D.二、填空題:本題共4小題,每小題5分,共20分。13、1【解析】

由題意先求得的值,可得,再令,可得結論.【詳解】已知,,,,令,可得,故答案為:1.【點睛】本題主要考查二項式定理的應用,注意根據題意,分析所給代數式的特點,通過給二項式的賦值,求展開式的系數和,可以簡便的求出答案,屬于基礎題.14、0【解析】

求出,求出切線點斜式方程,原點坐標代入,求出的值,求,求出單調區間,進而求出極小值最小值,即可求解.【詳解】,,,切線的方程:,又過原點,所以,,,.當時,;當時,.故函數的最小值,所以.故答案為:0.【點睛】本題考查導數的應用,涉及到導數的幾何意義、極值最值,屬于中檔題..15、【解析】

根據題意,利用余弦定理和基本不等式得出,再利用正弦定理,即可得出.【詳解】因為,則,由余弦定理得:,當且僅當時取等號,又因為,,所以.故答案為:.【點睛】本題考查余弦定理和正弦定理的應用,以及基本不等式求最值,考查計算能力.16、【解析】

由圖可得的周期、振幅,即可得,再將代入可解得,進一步求得解析式及.【詳解】由圖可得,,所以,即,又,即,,又,故,所以,.故答案為:【點睛】本題考查由圖象求解析式及函數值,考查學生識圖、計算等能力,是一道中檔題.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(Ⅰ);(Ⅱ)有最大值,最大值為3.【解析】

(Ⅰ)利用正弦定理將角化邊,再由余弦定理計算可得;(Ⅱ)由正弦定理可得,則,再根據正弦函數的性質計算可得;【詳解】(Ⅰ)由得再由正弦定理得因此,又因為,所以.(Ⅱ)當時,的周長有最大值,且最大值為3,理由如下:由正弦定理得,所以,所以.因為,所以,所以當即時,取到最大值2,所以的周長有最大值,最大值為3.【點睛】本題考查正弦定理、余弦定理解三角形,以及三角函數的性質的應用,屬于中檔題.18、(1)證明見解析(2)45°【解析】

(1)設的中點為,連接,設的中點為,連接,,從而即為二面角的平面角,,推導出,從而平面,則,即,進而平面,推導四邊形為平行四邊形,從而,平面,由此即可得證.(2)以B為原點,在平面中過B作BE的垂線為x軸,BE為y軸,BA為z軸建立空間直角坐標系,利用向量法求出平面與平面所成二面角的大小.【詳解】(1)∵是的中點,∴.設的中點為,連接.設的中點為,連接,.易證:,,∴即為二面角的平面角.∴,而為的中點.易知,∴為等邊三角形,∴.①∵,,,∴平面.而,∴平面,∴,即.②由①②,,∴平面.∵分別為的中點.∴四邊形為平行四邊形.∴,平面,又平面.∴平面平面.(2)如圖,建立空間直角坐標系,設.則,,,,顯然平面的法向量,設平面的法向量為,,,∴,∴.,由圖形觀察可知,平面與平面所成的二面角的平面角為銳角.∴平面與平面所成的二面角大小為45°.【點睛】本題主要考查立體幾何中面面垂直的證明以及求解二面角大小,難度一般,通常可采用幾何方法和向量方法兩種進行求解.19、(1)(x-1)2+y2=4,直線l的直角坐標方程為x-y-2=0;(2)3.【解析】

(1)消參得到曲線的普通方程,利用極坐標和直角坐標方程的互化公式求得直線的直角坐標方程;(2)先得到直線的參數方程,將直線的參數方程代入到圓的方程,得到關于的一元二次方程,由根與系數的關系、參數的幾何意義進行求解.【詳解】(1)由曲線C的參數方程(α為參數)(α為參數),兩式平方相加,得曲線C的普通方程為(x-1)2+y2=4;由直線l的極坐標方程可得ρcosθcos-ρsinθsin=ρcosθ-ρsinθ=2,即直線l的直角坐標方程為x-y-2=0.(2)由題意可得P(2,0),則直線l的參數方程為(t為參數).設A,B兩點對應的參數分別為t1,t2,則|PA|·|PB|=|t1|·|t2|,將(t為參數)代入(x-1)2+y2=4,得t2+t-3=0,則Δ>0,由韋達定理可得t1·t2=-3,所以|PA|·|PB|=|-3|=3.20、(1)(2)見解析【解析】試題分析:(1)分別求得和,由點斜式可得切線方程;(2)由已知條件可得有兩個相異實根,,進而再求導可得,結合函數的單調性可得,從而得證.試題解析:(1)由已知條件,,當時,,,當時,,所以所求切線方程為(2)由已知條件可得有兩個相異實根,,令,則,1)若,則,單調遞增,不可能有兩根;2)若,令得,可知在上單調遞增,在上單調遞減,令解得,由有,由有,從而時函數有兩個極值點,當變化時,,的變化情況如下表單調遞減單調遞增單調遞減因為,所以,在區間上單調遞增,.另解:由已知可得,則,令,則,可知函數在單調遞增,在單調遞減,若有兩個根,則可得,當時,,所以在區間上單調遞增,所以.21、(1)(2)【解析】

(1)把f(x)去絕對值寫成分段函數的形式,分類討論,分別求得解集,綜合可得結論.(2)把f(x)去絕對值寫成分段函數,畫出f(x)的圖像,找出利用條件求得a的值.【詳解】(1)時,.當時,即為,解得.當時,,解得.當時,,解得.綜上,的解集為.(2).,由的圖象知,,.【點睛】本題主要考查含絕對值不等

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論