2024屆北京市東城171中高三第二次診斷性測試數學試題試卷_第1頁
2024屆北京市東城171中高三第二次診斷性測試數學試題試卷_第2頁
2024屆北京市東城171中高三第二次診斷性測試數學試題試卷_第3頁
2024屆北京市東城171中高三第二次診斷性測試數學試題試卷_第4頁
2024屆北京市東城171中高三第二次診斷性測試數學試題試卷_第5頁
已閱讀5頁,還剩15頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

2023屆北京市東城171中高三第二次診斷性測試數學試題試卷考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.新聞出版業不斷推進供給側結構性改革,深入推動優化升級和融合發展,持續提高優質出口產品供給,實現了行業的良性發展.下面是2012年至2016年我國新聞出版業和數字出版業營收增長情況,則下列說法錯誤的是()A.2012年至2016年我國新聞出版業和數字出版業營收均逐年增加B.2016年我國數字出版業營收超過2012年我國數字出版業營收的2倍C.2016年我國新聞出版業營收超過2012年我國新聞出版業營收的1.5倍D.2016年我國數字出版營收占新聞出版營收的比例未超過三分之一2.已知函數,當時,恒成立,則的取值范圍為()A. B. C. D.3.一個圓錐的底面和一個半球底面完全重合,如果圓錐的表面積與半球的表面積相等,那么這個圓錐軸截面底角的大小是()A. B. C. D.4.數學中有許多形狀優美、寓意美好的曲線,例如:四葉草曲線就是其中一種,其方程為.給出下列四個結論:①曲線有四條對稱軸;②曲線上的點到原點的最大距離為;③曲線第一象限上任意一點作兩坐標軸的垂線與兩坐標軸圍成的矩形面積最大值為;④四葉草面積小于.其中,所有正確結論的序號是()A.①② B.①③ C.①③④ D.①②④5.已知雙曲線的一條漸近線方程是,則雙曲線的離心率為()A. B. C. D.6.函數的定義域為,集合,則()A. B. C. D.7.已知函數,,的零點分別為,,,則()A. B.C. D.8.已知函數,方程有四個不同的根,記最大的根的所有取值為集合,則“函數有兩個零點”是“”的().A.充分不必要條件 B.必要不充分條件C.充要條件 D.既不充分也不必要條件9.某地區高考改革,實行“3+2+1”模式,即“3”指語文、數學、外語三門必考科目,“1”指在物理、歷史兩門科目中必選一門,“2”指在化學、生物、政治、地理以及除了必選一門以外的歷史或物理這五門學科中任意選擇兩門學科,則一名學生的不同選科組合有()A.8種 B.12種 C.16種 D.20種10.下列函數中,在定義域上單調遞增,且值域為的是()A. B. C. D.11.點為不等式組所表示的平面區域上的動點,則的取值范圍是()A. B. C. D.12.曲線在點處的切線方程為()A. B. C. D.二、填空題:本題共4小題,每小題5分,共20分。13.四邊形中,,,,,則的最小值是______.14.若函數()的圖象與直線相切,則______.15.曲線在點處的切線方程是__________.16.已知兩個單位向量滿足,則向量與的夾角為_____________.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)設橢圓的左右焦點分別為,離心率是,動點在橢圓上運動,當軸時,.(1)求橢圓的方程;(2)延長分別交橢圓于點(不重合).設,求的最小值.18.(12分)對于正整數,如果個整數滿足,且,則稱數組為的一個“正整數分拆”.記均為偶數的“正整數分拆”的個數為均為奇數的“正整數分拆”的個數為.(Ⅰ)寫出整數4的所有“正整數分拆”;(Ⅱ)對于給定的整數,設是的一個“正整數分拆”,且,求的最大值;(Ⅲ)對所有的正整數,證明:;并求出使得等號成立的的值.(注:對于的兩個“正整數分拆”與,當且僅當且時,稱這兩個“正整數分拆”是相同的.)19.(12分)已知集合,集合,.(1)求集合B;(2)記,且集合M中有且僅有一個整數,求實數k的取值范圍.20.(12分)已知圓上有一動點,點的坐標為,四邊形為平行四邊形,線段的垂直平分線交于點.(Ⅰ)求點的軌跡的方程;(Ⅱ)過點作直線與曲線交于兩點,點的坐標為,直線與軸分別交于兩點,求證:線段的中點為定點,并求出面積的最大值.21.(12分)設首項為1的正項數列{an}的前n項和為Sn,數列的前n項和為Tn,且,其中p為常數.(1)求p的值;(2)求證:數列{an}為等比數列;(3)證明:“數列an,2xan+1,2yan+2成等差數列,其中x、y均為整數”的充要條件是“x=1,且y=2”.22.(10分)已知函數,.(1)當時,求函數的值域;(2),,求實數的取值范圍.

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.C【解析】

通過圖表所給數據,逐個選項驗證.【詳解】根據圖示數據可知選項A正確;對于選項B:,正確;對于選項C:,故C不正確;對于選項D:,正確.選C.【點睛】本題主要考查柱狀圖是識別和數據分析,題目較為簡單.2.A【解析】

分析可得,顯然在上恒成立,只需討論時的情況即可,,然后構造函數,結合的單調性,不等式等價于,進而求得的取值范圍即可.【詳解】由題意,若,顯然不是恒大于零,故.,則在上恒成立;當時,等價于,因為,所以.設,由,顯然在上單調遞增,因為,所以等價于,即,則.設,則.令,解得,易得在上單調遞增,在上單調遞減,從而,故.故選:A.【點睛】本題考查了不等式恒成立問題,利用函數單調性是解決本題的關鍵,考查了學生的推理能力,屬于基礎題.3.D【解析】

設圓錐的母線長為l,底面半徑為R,再表達圓錐表面積與球的表面積公式,進而求得即可得圓錐軸截面底角的大小.【詳解】設圓錐的母線長為l,底面半徑為R,則有,解得,所以圓錐軸截面底角的余弦值是,底角大小為.故選:D【點睛】本題考查圓錐的表面積和球的表面積公式,屬于基礎題.4.C【解析】

①利用之間的代換判斷出對稱軸的條數;②利用基本不等式求解出到原點的距離最大值;③將面積轉化為的關系式,然后根據基本不等式求解出最大值;④根據滿足的不等式判斷出四葉草與對應圓的關系,從而判斷出面積是否小于.【詳解】①:當變為時,不變,所以四葉草圖象關于軸對稱;當變為時,不變,所以四葉草圖象關于軸對稱;當變為時,不變,所以四葉草圖象關于軸對稱;當變為時,不變,所以四葉草圖象關于軸對稱;綜上可知:有四條對稱軸,故正確;②:因為,所以,所以,所以,取等號時,所以最大距離為,故錯誤;③:設任意一點,所以圍成的矩形面積為,因為,所以,所以,取等號時,所以圍成矩形面積的最大值為,故正確;④:由②可知,所以四葉草包含在圓的內部,因為圓的面積為:,所以四葉草的面積小于,故正確.故選:C.【點睛】本題考查曲線與方程的綜合運用,其中涉及到曲線的對稱性分析以及基本不等式的運用,難度較難.分析方程所表示曲線的對稱性,可通過替換方程中去分析證明.5.D【解析】雙曲線的漸近線方程是,所以,即,,即,,故選D.6.A【解析】

根據函數定義域得集合,解對數不等式得到集合,然后直接利用交集運算求解.【詳解】解:由函數得,解得,即;又,解得,即,則.故選:A.【點睛】本題考查了交集及其運算,考查了函數定義域的求法,是基礎題.7.C【解析】

轉化函數,,的零點為與,,的交點,數形結合,即得解.【詳解】函數,,的零點,即為與,,的交點,作出與,,的圖象,如圖所示,可知故選:C【點睛】本題考查了數形結合法研究函數的零點,考查了學生轉化劃歸,數形結合的能力,屬于中檔題.8.A【解析】

作出函數的圖象,得到,把函數有零點轉化為與在(2,4]上有交點,利用導數求出切線斜率,即可求得的取值范圍,再根據充分、必要條件的定義即可判斷.【詳解】作出函數的圖象如圖,由圖可知,,函數有2個零點,即有兩個不同的根,也就是與在上有2個交點,則的最小值為;設過原點的直線與的切點為,斜率為,則切線方程為,把代入,可得,即,∴切線斜率為,∴k的取值范圍是,∴函數有兩個零點”是“”的充分不必要條件,故選A.【點睛】本題主要考查了函數零點的判定,考查數學轉化思想方法與數形結合的解題思想方法,訓練了利用導數研究過曲線上某點處的切線方程,試題有一定的綜合性,屬于中檔題.9.C【解析】

分兩類進行討論:物理和歷史只選一門;物理和歷史都選,分別求出兩種情況對應的組合數,即可求出結果.【詳解】若一名學生只選物理和歷史中的一門,則有種組合;若一名學生物理和歷史都選,則有種組合;因此共有種組合.故選C【點睛】本題主要考查兩個計數原理,熟記其計數原理的概念,即可求出結果,屬于常考題型.10.B【解析】

分別作出各個選項中的函數的圖象,根據圖象觀察可得結果.【詳解】對于,圖象如下圖所示:則函數在定義域上不單調,錯誤;對于,的圖象如下圖所示:則在定義域上單調遞增,且值域為,正確;對于,的圖象如下圖所示:則函數單調遞增,但值域為,錯誤;對于,的圖象如下圖所示:則函數在定義域上不單調,錯誤.故選:.【點睛】本題考查函數單調性和值域的判斷問題,屬于基礎題.11.B【解析】

作出不等式對應的平面區域,利用線性規劃的知識,利用的幾何意義即可得到結論.【詳解】不等式組作出可行域如圖:,,,的幾何意義是動點到的斜率,由圖象可知的斜率為1,的斜率為:,則的取值范圍是:,,.故選:.【點睛】本題主要考查線性規劃的應用,根據目標函數的幾何意義結合斜率公式是解決本題的關鍵.12.A【解析】

將點代入解析式確定參數值,結合導數的幾何意義求得切線斜率,即可由點斜式求的切線方程.【詳解】曲線,即,當時,代入可得,所以切點坐標為,求得導函數可得,由導數幾何意義可知,由點斜式可得切線方程為,即,故選:A.【點睛】本題考查了導數的幾何意義,在曲線上一點的切線方程求法,屬于基礎題.二、填空題:本題共4小題,每小題5分,共20分。13.【解析】

在中利用正弦定理得出,進而可知,當時,取最小值,進而計算出結果.【詳解】,如圖,在中,由正弦定理可得,即,故當時,取到最小值為.故答案為:.【點睛】本題考查解三角形,同時也考查了常見的三角函數值,考查邏輯推理能力與計算能力,屬于中檔題.14.2【解析】

設切點由已知可得,即可解得所求.【詳解】設,因為,所以,即,又,.所以,即,.故答案為:.【點睛】本題考查導數的幾何意義,考查函數與方程思想、轉化與化歸思想,考查邏輯推理能力、運算求解能力,難度較易.15.【解析】

利用導數的幾何意義計算即可.【詳解】由已知,,所以,又,所以切線方程為,即.故答案為:【點睛】本題考查導數的幾何意義,考查學生的基本計算能力,要注意在某點處的切線與過某點的切線的區別,是一道容易題.16.【解析】

由得,即得解.【詳解】由題意可知,則.解得,所以,向量與的夾角為.故答案為:【點睛】本題主要考查平面向量的數量積的計算和夾角的計算,意在考查學生對這些知識的理解掌握水平.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(1);(2)【解析】

(1)根據題意直接計算得到,,得到橢圓方程.(2)不妨設,且,設,代入數據化簡得到,故,得到答案.【詳解】(1),所以,,化簡得,所以,,所以方程為;(2)由題意得,不在軸上,不妨設,且,設,所以由,得,所以,由,得,代入,化簡得:,由于,所以,同理可得,所以,所以當時,最小為【點睛】本題考查了橢圓方程,橢圓中的向量運算和最值,意在考查學生的計算能力和綜合應用能力.18.(Ⅰ),,,,;(Ⅱ)為偶數時,,為奇數時,;(Ⅲ)證明見解析,,【解析】

(Ⅰ)根據題意直接寫出答案.(Ⅱ)討論當為偶數時,最大為,當為奇數時,最大為,得到答案.(Ⅲ)討論當為奇數時,,至少存在一個全為1的拆分,故,當為偶數時,根據對應關系得到,再計算,,得到答案.【詳解】(Ⅰ)整數4的所有“正整數分拆”為:,,,,.(Ⅱ)當為偶數時,時,最大為;當為奇數時,時,最大為;綜上所述:為偶數,最大為,為奇數時,最大為.(Ⅲ)當為奇數時,,至少存在一個全為1的拆分,故;當為偶數時,設是每個數均為偶數的“正整數分拆”,則它至少對應了和的均為奇數的“正整數分拆”,故.綜上所述:.當時,偶數“正整數分拆”為,奇數“正整數分拆”為,;當時,偶數“正整數分拆”為,,奇數“正整數分拆”為,故;當時,對于偶數“正整數分拆”,除了各項不全為的奇數拆分外,至少多出一項各項均為的“正整數分拆”,故.綜上所述:使成立的為:或.【點睛】本土考查了數列的新定義問題,意在考查學生的計算能力和綜合應用能力.19.(1)(2)【解析】

(1)由不等式可得,討論與的關系,即可得到結果;(2)先解得不等式,由集合M中有且僅有一個整數,當時,則M中僅有的整數為;當時,則M中僅有的整數為,進而求解即可.【詳解】解:(1)因為,所以,當,即時,;當,即時,;當,即時,.(2)由得,當,即時,M中僅有的整數為,所以,即;當,即時,M中僅有的整數為,所以,即;綜上,滿足題意的k的范圍為【點睛】本題考查解一元二次不等式,考查由交集的結果求參數范圍,考查分類討論思想與運算能力.20.(Ⅰ);(Ⅱ)4.【解析】

(Ⅰ)先畫出圖形,結合垂直平分線和平行四邊形性質可得為一定值,,故可確定點軌跡為橢圓(),進而求解;(Ⅱ)設直線方程為,點坐標分別為,聯立直線與橢圓方程得,,分別由點斜式求得直線KA的方程為,令得,同理得,由結合韋達定理即可求解,而,當重合交于點時,可求最值;【詳解】(Ⅰ),所以點的軌跡是一個橢圓,且長軸長,半焦距,所以,軌跡的方程為.(Ⅱ)當直線的斜率為0時,與曲線無交點.當直線的斜率不為0時,設過點的直線方程為,點坐標分別為.直線與橢圓方程聯立得消去,得.則,.直線KA的方程為.令得.同理可得.所以.所以的中點為.不妨設點在點的上方,則.【點睛】本題考查根據橢圓的定義求橢圓的方程,橢圓中的定點定值問題,屬于中檔題21.(1)p=2;(2)見解析(3)見解析【解析】

(1)取n=1時,由得p=0或2,計算排除p=0的情況得到答案.(2),則,相減得到3an+1=4﹣Sn+1﹣Sn,再化簡得到,得到證明.(3)分別證明充分性和必要性,假設an,2xan+1,2yan+2成等差數列,其中x、y均為整數,計算化簡得2x﹣2y﹣2=1,設k=x﹣(y﹣2),計算得到k=1,得到答案.【詳解】(1)n=1時,由得p=0

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

評論

0/150

提交評論