




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
IQVIA
TECHNOLOGIES
ExecutiveSummary
ApplyingAIinToday’s
RealityofQARAProcesses
AIinMedTechandpracticalrealitiesinQARA
ERDITGREMI,DirectorRegulatoryAffairs,Philips
DENISEMEADE,HealthcareandLifesciencesTechnologyLeader,Microsoft
RAJESHMIRSA,Principal,LifeSciencesQualityandRegulatoryServicesLeader,KPMGLLPCARLOSLUGO,VicePresidentofGlobalProductSafety&Surveillance,Philips
DONSOONG,SeniorDirectorandGeneralManager,QualityManagementSolutions,IQVIATechnologiesLORIELLIS,HeadofInsights,BioSpace(Moderator)
Tableofcontents
Keytakeaways1
Overview1
Context1
BeforetalkingaboutAI,wemustunderstandtheAIplayingfield1
ThelifesciencesandhealthcareindustriesintheU.S.arebehindothercountriesand
industriesinAIadoption2
Thetechnologyisonlyasgoodasyourdata2
Cleandatastartswithvalidation,buthandlingreal-worlddata(RWD)ismessy3
OrganizationsareeducatingQARAprofessionalstounderstandAIandpreparingfor
thefuture3
Conclusion4
Abouttheauthor5
Keytakeaways
?BeforetalkingaboutAI,wemustunderstandtheAI
playingfield.
?ThelifesciencesandhealthcareindustriesintheU.S.arebehindothercountriesandindustriesinAIadoption.
?Thetechnologyisonlyasgoodasyourdata.
?Cleandatastartswithvalidation,buthandlingreal-
worlddata(RWD)ismessy.
?Organizationsareeducatingqualityassuranceandregulatoryaffairs(QARA)specialiststounderstandAIandpreparingforthefuture.
Overview
Thegloballifesciencesindustryhasbeenslowto
adoptAI,particularlygenerativeAI(GenAI).AsGenAIbecomesmorewidelyadopted,QARAprofessionalsfacechallengesinthespaceandinhowitisappliedtoQualityandRegulatoryprocesses,whichrequiresanunderstandingofAItosuccessfullynavigate
datacleansing.
Context
QARAprofessionalsneedtocollaboratewithother
professionalstonavigatethechallengesthatAIbringsandreapthetechnology’sbenefitstoimprovepatientoutcomesandcommercialperformance.
BeforetalkingaboutAI,wemustunderstandtheAI
playingfield
ThepaneldiscussionbeganwithDeniseMeade,
healthcareandlifesciencestechnologyleaderat
Microsoft,settingilluminatingtheAIplayingfield
fortheaudience.SheexplainedthatAIisabroad
category.Machinelearning(ML)discussionstypicallyinvolvetheneedtotrain,testandreleasebasedonlargedatasetswhilelargelanguagemodels(LLMs),whicharealreadytrained,needtobegroundedin
data.ShehighlightedthatGenAIhashadagiantleapforwardinthelastfewyears.
“Toputitintoperspective,ittook
Netflixthreeandhalfyearstoreachonemillionusers.IttookgenerativeAIfivedays.”
—DeniseMeade,HealthcareandLifesciencesTechnologyLeader,Microsoft
TherearetworeasonshowquicklyGenAIwasadopted,Meadeexplained:accessibilityandvalue.“Essentiallyacoupleofcompaniestookabigleapforwardby
investinginitsotherestofusdonotneedtotraineverytimeyouuseLLMS,suchasChatGPT.Itcanbeappliedquicklyandeasilytogetinformation.”
Meadecautionedthatusersneedtohavesome
understandingofhowGenAIworksandhowtouseiteffectively.However,thereisadifferencebetweenLLMsandsmalllanguagemodels(SLMs),andwhatisbeingdonewithtraditionalAIcommonlyusedin
digitalmedicaldevices,roboticsandultrasoundtechnology.
“Withthesemodels,youaretakingwhathasalreadybeentrainedandgroundingitinyourowndata,”
Meadeexplained.“Abigimportantpartisthatdata
isaportionandsuperimportanttotraininmachine
learning.ButforGenAI,itismoreimportanttogroundthedataorgroundtheanswersinthedatathatyou
have.Youdon’tneedtotrainthem.”
|1
Thelifesciencesand
healthcareindustriesin
theU.S.arebehindother
countriesandindustriesinAIadoption
AspointedoutbothbyPhilips’ErditGremi,directorofregulatoryaffairs,andCarlosLugo,thecompany’svicepresidentofglobalproductsafety&surveillance,the
lifesciencesandhealthcareindustriesarebehindin
AIadoption.
“AlthoughwesaythatUnitedStateslifesciencesandhealthcareindustrysayisadvancedininnovationandtechnology,weareextremelybehindtherestoftheworldandotherindustries,”Lugoexplained.“AsmuchasIunderstandwewanttocontinuetobeopento
usingartificialintelligence,there’sstillthatregulatorystop.Ican’teventellyouhowoftenIheardFDAsay,‘Weloveit.Wewanttolearnmoreaboutit.’Westill
needadecidingfactor.Westillneedthathumaninteractiontosayyesorno.”
WhiletheFDAishesitanttoadoptAI,regulatorsin
othercountriesarenot.Australia’sTherapeuticGoodsAdministration(TGA)hasbeensteadilyincreasingitsadoptionofAIandBigPharmaareapproachingPhilipstopartnerinthespace.
AspointedoutbyGremi,LLMsandAIingeneralrequireafundamentallydifferentproductdesignapproach,onenotbasedontraditionalrolesorhierarchicalif-thenstatements.
“Howdoyoumakesurethatthe
datathatyouhaveinputintothisAIorintothismodelaretruly
representativeofallofthetypesofpatientsorcasesthatyouwillseethroughouttheentirelifetimeofthisproduct?”
—ErditGremi,DirectorRegulatoryAffairs,Philips
Instead,regulatorsandproductdesignersneedtoconsiderotherchallenges.
“Areyoustatisticallysoundinthatjudgment,andhaveyouacquireditsufficientlysothatsomethingthat
youmissedtodayinyourvaluationmodel,oryourvalidationsetdoesn’tbecometheadverseeventsayearfromnow?”Gremimused.
Thetechnologyisonlyasgoodasyourdata
Aspreviouslymentioned,GenAIandLLMsarealreadytrainedbutneedtobegroundedindata.ThisiswhereQARAprofessionalsneedtobesavvyenoughto
understandthedataanddatasources.DonSoong,
seniordirectorandgeneralmanagerofquality
managementsolutionsatIQVIA,suggestedthatQARAprofessionalsanddatascientistscollaborate.“Thedatascientistisgoingtounderstandallthetechniquesof
cleansingdata,buttheQARAisgoingtounderstandthenuancesinthedata,sotheymustpartner.”
PhilipshasQARAanddatascientistsinthesame
departmenttopromotecollaborationandreduce
downtime.Withthesetwotypesofexpertiseworkingtogether,researcherscangainatrueunderstandingofthedata,thedemographics,geographyandotherelementsthatbiasthedata.Tomitigatethatbias
throughcleansing,thetwodepartmentsbalancethedatasotherearethesamenumberofparameters
percategory,whichwillgiveafairresponsewhenthealgorithmsrun.
RajeshMirsa,principaloflifesciencesqualityand
regulatoryservicesleaderatKPMGLLP,wasnot
surprisedthatthediscussionturnedtowardsdata
quality.“I’vebeendoingthisforcloseto30yearsandwehavebeenhearingthesamethingforlast30years,thedataqualityisaproblem.Nothinghaschangedthelast30years.”Mirsabelievesthattheindustryneedstorethinkitsstrategy,puttinginplaceapproachesthatwillgeneratedataofsufficientquality.“Dataisnota
staticthing.Itchanges.”
2|ApplyingAIinToday’sRealityofQARAProcesses
Cleandatastartswith
validation,buthandlingReal-WorldData(RWD)ismessy
ToLugo,thekeyisdatavalidation.“Weknowthatdatamaynotbe100%pure,butcanwevalidatewhatwe
haveandmoveforward?”Beingabletoaskandanswer
thisquestionensurestherightqualitydecisions
aremade.Gremiaddedthatdataacquisitionexerciseistrulyidealbutnotalwaysfeasible.Thebest
availabletypeofdataisreal-worlddata(RWD),asitisrepresentativeofwhatthealgorithmormodelbeingdevelopedisgoingtobeencounteringintheworld.“Relyingonreal-worlddataandunderstandingwhatyoucansiftthroughandalreadyhaveavailablein
somewaysisactuallymorerepresentativethanatrueclinicalvalidationofaprospectivestudybecauseitishappeninginclinics,”Gremiexplained.
Mirsaemphasizedthatcorrectdataarecriticalwhendealingwithcomplaintsorotherspecifictasks.In
addition,hesaidthatthereisacertainamountofacceptableriskwhendealingwithdatasinceitwillneverbe100%pure.Heexplainedthequestionsheproposestohisteamsandclients.
“WhatisthepurposeofthedatathatI’mtryingtodoifI’musingforsomesortofalgorithmicmodeling?
WhatsortofhypothesisamItryingtocreate?”In
somecases,hesaid,“Idon’tneed100%correctdata;Icanlivewith70%or80%.ThenItakeoutthe20%or
30%andoutliersIbelievearenotcorrect.Iwillgettothesamehypothesisofwhatismypatternislookingfor.”Whendesigningapattern,hesaidheaddressesthedatainconsistenciesbytakingthemoutofthe
calculationswhilebuildingthemodel.
RWDhasthepotentialtobecollectedinamore
pristinemanner.Meadespokefromexperiencewith
companiesthatcometoMicrosofttofixthecollectionofRWDoranydata.“Oftentimeswhatweendupdoingattheendoftheprojectisactuallystartingmoving
folksfrompaperprocessesjusttodigitalprocesses,”Meadenoted.“Itisamazinghowmanytimeswhenyougointoafactoryandpeopleareusingapenandpapertocollectdata,whichisthenlatertranscribedinto
asystem.”
OrganizationsareeducatingQARAprofessionalsto
understandAIandpreparingforthefuture
ThebiggestchallengeishowtokeepinfrontofAI.
Lugonotedthatconferencesandprivateeventsare
keytohelpingtheindustryadoptAI.Ascompanies
enterthespacemoreaggressive,Lugosaidhefinds
thatitisdifficulttoopendoorsandlowerwalls
becauselifesciencesareguardedaswholeinthe
UnitedStates,unliketherestoftheworld,whenit
comestoAIadoption.Theprocessisslow.However,
hedidnoteincreasingcybersecurityconcernsas
aconsequenceoftechnologicaladvancesincethe
discussiontookplaceduringtheCrowdStrikeincident,whichcreatedflightissuesforbothpanelistsand
audiencemembers.Atthetimeofthediscussion,therewerestill600flightscanceledthedaypriorbyDelta.
Mirsasuggestedthatthemostpressingconcernis
theworkforce.Inthecurrentenvironment,QARA
professionals’workloadconsistsof30%to40%
paperwork.Hesuggestedthatthisis15to20years
behindthetechnologicalcurvecomparedtoother
industries.ThisisindirectoppositiontoFDA’s
approvalof150AI-basedproductswithinthelasteightmonths,whichbringsittoatotalofover700productsbeingapprovedtodate.Whilestillbehindother
industries,QARAprocessesthataredependenton
paperworkslowdowntheprocessandwillnotbeabletoeffectivelyhandletheinfluxofinformationastheindustrycontinuestoblendAIintoscience.
Additionally,thefutureworkforcehasbeenraisedonAIsopaperprocessesmaybeforeigntothem.Mirsaquestioned,“Howdowetraintheworkforce?And
that’saveryimmediateproblemtodayforcompaniesontheworkforceperspective.”Fortheindustryto
moveforward,theworkplacemustmoveawayfrompaper.
LugofurtheremphasizedMirsa’spoint.Becausetheupcomingworkforcehasbeenraisedwithtechnology,trainingbecomesdifficultwhenworkingwith
newhires.Onekeyexamplehegavewasthrough
|3
communication.Lugoexplained,“IfI’mtryingtogetoneofmyengineerswhoIjustrecentlyhired,I’m
calling,callingandcalling.Heorsheneverpicksupthephone,butthemomentIsendatextoranemail,theresponseisimmediate.”ThequestionforLugoishowdoyoutrainanewhirewiththatcommunicationstyle.ItisagapheisactivelyworkingonfiguringoutforPhilips.
Soongfocusedonthecostefficiencyconcernsforleadership.
“Theindustryisdrivingustobemorecostefficient.Domorewithless,soleadershipwantsAIto
beused.”
Conclusion
QARAprocessesandproceduresneedtoevolvetoadopttechnology.Thelifesciencesandhealthcare
industryinUnitedStatesisbehindbothother
industriesandcountriesinadoption.However,there
isclearlyaneedforAI.Theupcomingworkforceis
comfortablewithAIbutwillneedtraining.ThistrainingcanonlybecompletedbythoseQARAprofessionals
whoareabletoclosetheknowledgegapbetweenthecurrentpaperprocesswiththetechnologicalprocessesofthefuture.Ultimately,theadoptionofAIintoQARAprocessesha
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 富士康終止合同協議書
- 合同簽訂后三方協議書
- 科研獻血協議書
- 投資人和運營人協議書
- 戀愛買房分手有協議書
- 喝酒前先簽免責協議書
- 結對合作協議書
- 員工大飯堂承包協議書
- 電費起碼協議書
- 終止謠言協議書
- 應急救援安全應知應會題庫
- 2024-2025學年七年級下學期英語人教版(2024)期末達標測試卷A卷(含解析)
- 2024年廣東高校畢業生“三支一扶”計劃招募筆試真題
- 5年級語文下冊看拼音寫詞語漢字生字擴詞日積月累專項練習電子版
- 2025至2030年中國護腰帶行業投資前景及策略咨詢報告
- 2025年山東省聊城市東昌府區中考二模語文試題(含答案)
- 2025年“六一”少先隊新隊員入隊儀式主持詞
- 空調崗位試題庫及答案
- 2024紡織機械操作流程掌握試題及答案
- 2025年貴州水投水庫運營管理西秀有限公司招聘筆試參考題庫附帶答案詳解
- 2025年第六屆(中小學組)國家版圖知識競賽測試題庫及答案
評論
0/150
提交評論