寧夏銀川市興慶區長慶高級中學2025屆高二數學第一學期期末考試模擬試題含解析_第1頁
寧夏銀川市興慶區長慶高級中學2025屆高二數學第一學期期末考試模擬試題含解析_第2頁
寧夏銀川市興慶區長慶高級中學2025屆高二數學第一學期期末考試模擬試題含解析_第3頁
寧夏銀川市興慶區長慶高級中學2025屆高二數學第一學期期末考試模擬試題含解析_第4頁
寧夏銀川市興慶區長慶高級中學2025屆高二數學第一學期期末考試模擬試題含解析_第5頁
已閱讀5頁,還剩11頁未讀 繼續免費閱讀

下載本文檔

版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領

文檔簡介

寧夏銀川市興慶區長慶高級中學2025屆高二數學第一學期期末考試模擬試題考生請注意:1.答題前請將考場、試室號、座位號、考生號、姓名寫在試卷密封線內,不得在試卷上作任何標記。2.第一部分選擇題每小題選出答案后,需將答案寫在試卷指定的括號內,第二部分非選擇題答案寫在試卷題目指定的位置上。3.考生必須保證答題卡的整潔。考試結束后,請將本試卷和答題卡一并交回。一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1.已知橢圓,則下列結論正確的是()A.長軸長為2 B.焦距為C.短軸長為 D.離心率為2.已知三棱錐的各頂點都在同一球面上,且平面,若該棱錐的體積為,,,,則此球的表面積等于()A. B.C. D.3.將點的極坐標化成直角坐標是(

)A. B.C. D.4.在各項均為正數等比數列中,若成等差數列,則=()A. B.C. D.5.已知橢圓的左右焦點分別為,,點B為短軸的一個端點,則的周長為()A.20 B.18C.16 D.96.命題“若,則”的逆命題、否命題、逆否命題中是真命題的個數為()A.0個 B.1個C.2個 D.3個7.在等差數列中,,且構成等比數列,則公差等于()A.0 B.3C. D.0或38.過坐標原點作直線的垂線,垂足為,則的取值范圍是()A. B.C. D.9.如圖是一水平放置的青花瓷.它的外形為單葉雙曲面,可看成是雙曲線的一部分繞其虛軸旋轉所形成的曲面,且其外形上下對稱.花瓶的最小直徑為,瓶口直徑為,瓶高為,則該雙曲線的虛軸長為()A. B.C. D.4510.若某群體中的成員只用現金支付的概率為,既用現金支付也用非現金支付的概率為,則不用現金支付的概率為()A. B.C. D.11.已知等比數列的前項和為,首項為,公比為,則()A. B.C. D.12.已知,是橢圓的兩焦點,是橢圓上任一點,從引外角平分線的垂線,垂足為,則點的軌跡為()A.圓 B.兩個圓C.橢圓 D.兩個橢圓二、填空題:本題共4小題,每小題5分,共20分。13.已知函數(1)求函數的最小正周期和單調遞增區間;(2)在銳角三角形中,角,,所對的邊分別為,,,若,,,求的面積14.如圖,長方體中,,,,,分別是,,的中點,則異面直線與所成角為__.15.關于曲線C:1,有如下結論:①曲線C關于原點對稱;②曲線C關于直線x±y=0對稱;③曲線C是封閉圖形,且封閉圖形的面積大于2π;④曲線C不是封閉圖形,且它與圓x2+y2=2無公共點;⑤曲線C與曲線D:|x|+|y|=2有4個公共點,這4點構成正方形其中正確結論的個數是_____16.過點的直線與拋物線相交于,兩點,,則直線的方程為______.三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17.(12分)已知點在拋物線()上,過點A且斜率為1直線與拋物線的另一個交點為B(1)求p的值和拋物線的焦點坐標;(2)求弦長18.(12分)已知數列的前n項積,數列為等差數列,且,(1)求與的通項公式;(2)若,求數列的前n項和19.(12分)已知圓的圓心為,且經過點.(1)求圓的標準方程;(2)已知直線與圓相交于、兩點,求.20.(12分)已知點A(,0),點C為圓B:(B為圓心)上一動點,線段AC的垂直平分線與直線BC交于點G(1)設點G的軌跡為曲線T,求曲線T的方程;(2)若過點P(m,0)()作圓O:的一條切線l交(1)中的曲線T于M、N兩點,求△MNO面積的最大值21.(12分)等差數列的前項和記為,已知.(1)求的通項公式:(2)求,并求為何值時的值最大.22.(10分)已知點,點B為直線上的動點,過B作直線的垂線,線段AB的中垂線與交于點P(1)求點P的軌跡C的方程;(2)若過點的直線l與曲線C交于M,N兩點,求面積的最小值.(O為坐標原點)

參考答案一、選擇題:本題共12小題,每小題5分,共60分。在每小題給出的四個選項中,只有一項是符合題目要求的。1、D【解析】根據已知條件求得,由此確定正確答案.【詳解】依題意橢圓,所以,所以長軸長為,焦距為,短軸長為,ABC選項錯誤.離心率為,D選項正確.故選:D2、D【解析】由條件確定三棱錐的外接球的球心位置及球的半徑,再利用球的表面積公式求外接球的表面積.【詳解】由已知,,,可得三棱錐的底面是直角三角形,,由平面可得就是三棱錐外接球的直徑,,,即,則,故三棱錐外接球的半徑為,所以三棱錐外接球的表面積為故選:D.【點睛】與球有關的組合體問題,一種是內切,一種是外接.解題時要認真分析圖形,明確切點和接點的位置,確定有關元素間的數量關系,并作出合適的截面圖,如球內切于正方體,切點為正方體各個面的中心,正方體的棱長等于球的直徑;球外接于正方體,正方體的頂點均在球面上,正方體的體對角線長等于球的直徑.3、A【解析】本題考查極坐標與直角坐標互化由點M的極坐標,知極坐標與直角坐標的關系為,所以的直角坐標為即故正確答案為A4、A【解析】利用等差中項的定義以及等比數列的通項公式即可求解.【詳解】設等比數列的公比為,∵成等差數列,∴,即,解得或(舍去),∴,故選:.5、B【解析】根據橢圓的定義求解【詳解】由橢圓方程知,所以,故選:B6、B【解析】先判斷出原命題和逆命題的真假,進而根據互為逆否的兩個命題同真或同假最終得到答案.【詳解】“若a=0,則ab=0”,命題為真,則其逆否命題也為真;逆命題為:“若ab=0,則a=0”,顯然a=1,b=0時滿足ab=0,但a≠0,即逆命題為假,則否命題也為假.故選:B.7、D【解析】根據,且構成等比數列,利用“”求解.【詳解】設等差數列的公差為d,因為,且構成等比數列,所以,解得,故選:D8、D【解析】求出直線直線過的定點A,由題意可知垂足是落在以OA為直徑的圓上,由此可利用的幾何意義求得答案,【詳解】直線,即,令,解得,即直線過定點,由過坐標原點作直線的垂線,垂足為,可知:落在以OA為直徑的圓上,而以OA為直徑的圓為,如圖示:故可看作是圓上的點到原點距離的平方,而圓過原點,圓上點到原點的最遠距離為,但將原點坐標代入直線中,不成立,即直線l不過原點,所以不可能和原點重合,故,故選:D9、C【解析】設雙曲線方程為,,由已知可得,并求得雙曲線上一點的坐標,把點的坐標代入雙曲線方程,求解,即可得到雙曲線的虛軸長【詳解】設點是雙曲線與截面的一個交點,設雙曲線的方程為:,花瓶的最小直徑,則,由瓶口直徑為,瓶高為,可得,故,解得,該雙曲線的虛軸長為故選:10、A【解析】利用對立事件概率公式可求得所求事件的概率.【詳解】由對立事件的概率公式可知,該群體中的成員不用現金支付的概率為.故選:A.11、D【解析】根據求解即可.【詳解】因為等比數列,,所以.故選:D12、A【解析】設的延長線交的延長線于點,由橢圓性質推導出,由題意知是△的中位線,從而得到點的軌跡是以為圓心,以為半徑的圓【詳解】是焦點為、的橢圓上一點為的外角平分線,,設的延長線交的延長線于點,如圖,,,,由題意知是△的中位線,,點的軌跡是以為圓心,以為半徑的圓故選:A二、填空題:本題共4小題,每小題5分,共20分。13、(1)最小正周期,,;(2)【解析】(1)根據降冪公式、輔助角公式化簡函數的解析式,再利用正弦型函數的最小正周期公式、單調性進行求解即可;(2)根據特殊角的三角函數值,結合三角形面積公式進行求解即可.【詳解】(1),所以的最小正周期令,,解得,,所以的單調遞增區間為,(2)因為,所以,即,又,所以,所以或,或,當時,,不符合題意,舍去;當時,,符合題意,所以,,,,此時為等腰三角形,所以,所以,即的面積為14、【解析】以為原點,為軸,為軸,為軸,建立空間直角坐標系,利用向量法能求出異面直線與所成角.【詳解】解:以為原點,為軸,為軸,為軸,建立空間直角坐標系,,0,,,0,,,2,,,1,,,,設異面直線與所成角為,,異面直線與所成角為.故答案為:.15、4【解析】直接利用曲線的性質,對稱性的應用可判斷①②;求出可判斷③;聯立方程,解方程組可判斷④⑤的結論【詳解】對于①,將方程中的x換為﹣x,y換為﹣y,方程不變,曲線C關于原點對稱,故①正確;對于②,將方程中的x換為﹣y,把y換成﹣x,方程不變,曲線C關于直線x±y=0對稱,故②正確;對于③,由方程得,故曲線C不是封閉圖形,故③錯誤;對于④,曲線C:,不是封閉圖形,聯立整理可得:,方程無解,故④正確;對于⑤,曲線C與曲線D:由于,解得,根據對稱性,可得公共點為,故曲線C與曲線D有四個交點,這4點構成正方形,故⑤正確故答案為:416、##【解析】根據拋物線方程可得焦點坐標,進而點P為拋物線的焦點,設,利用拋物線的定義可得,有軸,即可得出結果.【詳解】由題意知,拋物線的焦點坐標,又,所以點P為拋物線的焦點,設,由,由拋物線的定義得,解得,所以AB垂直與x軸,所以直線AB的方程為:.故答案為:三、解答題:共70分。解答應寫出文字說明、證明過程或演算步驟。17、(1),焦點坐標(2)【解析】(1)將點的坐標代入拋物線的方程,可求得的值,進而可得拋物線的焦點坐標;(2)寫出直線的方程,聯立直線與拋物線方程求得交點坐標,利用兩點之間的距離公式即可求解.【小問1詳解】因為點在拋物線上,所以,即所以拋物線的方程為,焦點坐標為;【小問2詳解】由已知得直線方程為,即由得,解得或所以,則18、(1),.(2).【解析】(1)由已知得,,兩式相除得,由已知得,求得數列的公差為,由等差數列的通項公式可求得;(2)運用錯位相減法可求得.【小問1詳解】解:因為數列的前n項積,所以,所以,兩式相除得,因為數列為等差數列,且,,所以,即,所以數列的公差為,所以,所以,【小問2詳解】解:由(1)得,所以,,所以,所以.19、(1);(2).【解析】(1)求出圓的半徑長,結合圓心坐標可得出圓的標準方程;(2)求出圓心到直線的距離,利用勾股定理可求得.小問1詳解】解:圓的半徑為,因此,圓的標準方程為.【小問2詳解】解:圓心到直線的距離為,因此,.20、(1)(2)1【解析】(1)可由題意,點G在線段AC的垂直平分線上,,可利用橢圓的定義,得到點G的軌跡為橢圓,然后利用已知的長度關系求解出橢圓方程;(2)可通過設l的方程,利用l是圓O的切線,通過點到直線的距離得到一組等量關系,然后將直線與橢圓聯立方程,計算弦長,表示出△MNO面積的表達式,將上面得到的等量關系代入利用基本不等式即可求解出最值.【小問1詳解】依題意有,,即G點軌跡是以A,B為焦點的橢圓,設橢圓方程為由題意可知,,則,,所以曲線T的方程為【小問2詳解】設,,設直線l的方程為,因為直線l與圓相切,所以,即,聯立直線l與橢圓的方程,整理得,,由韋達定理可得,,所以,又點O到直線l的距離為1,所以當且僅當,即時,取等號,所以的面積的最大值為121、(1);(2)當或時,的值最大.【解析】(1)根據等差數列前項和公式,結合等差數列的通項公式進行求解即可;(2)根據等差數列的性質進行求解即可.【小問1詳解】設等差數列的公差為,因為,所以有,即;【小問2詳解】由(1)可知,所以該數列是遞減數列,而,當時,解得:,因此當或時,的值最大.22、(1)(2)【解析】(1)由

溫馨提示

  • 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
  • 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
  • 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
  • 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
  • 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
  • 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
  • 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。

最新文檔

評論

0/150

提交評論