




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
山東省王浩屯中學2024年中考數學仿真試卷注意事項1.考生要認真填寫考場號和座位序號。2.試題所有答案必須填涂或書寫在答題卡上,在試卷上作答無效。第一部分必須用2B鉛筆作答;第二部分必須用黑色字跡的簽字筆作答。3.考試結束后,考生須將試卷和答題卡放在桌面上,待監考員收回。一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1.在平面直角坐標系中,點A的坐標是(﹣1,0),點B的坐標是(3,0),在y軸的正半軸上取一點C,使A、B、C三點確定一個圓,且使AB為圓的直徑,則點C的坐標是()A.(0,) B.(,0) C.(0,2) D.(2,0)2.已知代數式x+2y的值是5,則代數式2x+4y+1的值是()A.6
B.7C.11D.123.方程的解是A.3 B.2 C.1 D.04.關于x的不等式組無解,那么m的取值范圍為()A.m≤-1 B.m<-1 C.-1<m≤0 D.-1≤m<05.在0.3,﹣3,0,﹣這四個數中,最大的是()A.0.3 B.﹣3 C.0 D.﹣6.﹣3的相反數是()A. B. C. D.7.如圖,一個可以自由轉動的轉盤被等分成6個扇形區域,并涂上了相應的顏色,轉動轉盤,轉盤停止后,指針指向藍色區域的概率是()A. B.C. D.8.3點40分,時鐘的時針與分針的夾角為()A.140° B.130° C.120° D.110°9.方程5x+2y=-9與下列方程構成的方程組的解為的是()A.x+2y=1 B.3x+2y=-8C.5x+4y=-3 D.3x-4y=-810.如圖,有一矩形紙片ABCD,AB=10,AD=6,將紙片折疊,使AD邊落在AB邊上,折痕為AE,再將以DE為折痕向右折疊,AE與BC交于點F,則的面積為()A.4 B.6 C.8 D.10二、填空題(共7小題,每小題3分,滿分21分)11.將兩張三角形紙片如圖擺放,量得∠1+∠2+∠3+∠4=220°,則∠5=__.12.如圖,在正方形網格中,線段A′B′可以看作是線段AB經過若干次圖形的變化(平移、旋轉、軸對稱)得到的,寫出一種由線段AB得到線段A′B′的過程______13.如圖,將△AOB繞點按逆時針方向旋轉后得到,若,則的度數是_______.14.寫出一個平面直角坐標系中第三象限內點的坐標:(__________)15.圖中是兩個全等的正五邊形,則∠α=______.16.如圖,△ABC中,AB=6,AC=4,AD、AE分別是其角平分線和中線,過點C作CG⊥AD于F,交AB于G,連接EF,則線段EF的長為_____.17.如果一個正多邊形的中心角等于,那么這個正多邊形的邊數是__________.三、解答題(共7小題,滿分69分)18.(10分)如圖,正方形ABCD的邊長為4,點E,F分別在邊AB,AD上,且∠ECF=45°,CF的延長線交BA的延長線于點G,CE的延長線交DA的延長線于點H,連接AC,EF.,GH.填空:∠AHC∠ACG;(填“>”或“<”或“=”)線段AC,AG,AH什么關系?請說明理由;設AE=m,①△AGH的面積S有變化嗎?如果變化.請求出S與m的函數關系式;如果不變化,請求出定值.②請直接寫出使△CGH是等腰三角形的m值.19.(5分)如圖,在Rt△ABC中,∠C=90°,以AC為直徑作⊙O,交AB于D,過點O作OE∥AB,交BC于E.(1)求證:ED為⊙O的切線;(2)若⊙O的半徑為3,ED=4,EO的延長線交⊙O于F,連DF、AF,求△ADF的面積.20.(8分)一名在校大學生利用“互聯網+”自主創業,銷售一種產品,這種產品的成本價10元/件,已知銷售價不低于成本價,且物價部門規定這種產品的銷售價不高于16元/件,市場調查發現,該產品每天的銷售量(件與銷售價(元/件)之間的函數關系如圖所示.求與之間的函數關系式,并寫出自變量的取值范圍;求每天的銷售利潤W(元與銷售價(元/件)之間的函數關系式,并求出每件銷售價為多少元時,每天的銷售利潤最大?最大利潤是多少?21.(10分)三輛汽車經過某收費站下高速時,在2個收費通道A,B中,可隨機選擇其中的一個通過.(1)三輛汽車經過此收費站時,都選擇A通道通過的概率是;(2)求三輛汽車經過此收費站時,至少有兩輛汽車選擇B通道通過的概率.22.(10分)如圖,已知△ABC內接于⊙O,BC交直徑AD于點E,過點C作AD的垂線交AB的延長線于點G,垂足為F.連接OC.(1)若∠G=48°,求∠ACB的度數;(1)若AB=AE,求證:∠BAD=∠COF;(3)在(1)的條件下,連接OB,設△AOB的面積為S1,△ACF的面積為S1.若tan∠CAF=,求的值.23.(12分)我們常用的數是十進制數,如,數要用10個數碼(又叫數字):0、1、2、3、4、5、6、7、8、9,在電子計算機中用的二進制,只要兩個數碼:0和1,如二進制中等于十進制的數6,等于十進制的數53.那么二進制中的數101011等于十進制中的哪個數?24.(14分)在圍棋盒中有x顆黑色棋子和y顆白色棋子,從盒中隨機地取出一個棋子,如果它是黑色棋子的概率是;如果往盒中再放進10顆黑色棋子,則取得黑色棋子的概率變為.求x和y的值.
參考答案一、選擇題(每小題只有一個正確答案,每小題3分,滿分30分)1、A【解析】
直接根據△AOC∽△COB得出OC2=OA?OB,即可求出OC的長,即可得出C點坐標.【詳解】如圖,連結AC,CB.
依△AOC∽△COB的結論可得:OC2=OAOB,即OC2=1×3=3,解得:OC=或?(負數舍去),故C點的坐標為(0,).故答案選:A.【點睛】本題考查了坐標與圖形性質,解題的關鍵是熟練的掌握坐標與圖形的性質.2、C【解析】
根據題意得出x+2y=5,將所求式子前兩項提取2變形后,把x+2y=5代入計算即可求出值.【詳解】∵x+2y=5,∴2x+4y=10,則2x+4y+1=10+1=1.故選C.【點睛】此題考查了代數式求值,利用了整體代入的思想,是一道基本題型.3、A【解析】試題分析:分式方程去分母轉化為整式方程,求出整式方程的解得到x的值,經檢驗即可得到分式方程的解:去分母得:2x=3x﹣3,解得:x=3,經檢驗x=3是分式方程的解.故選A.4、A【解析】【分析】先求出每一個不等式的解集,然后再根據不等式組無解得到有關m的不等式,就可以求出m的取值范圍了.【詳解】,解不等式①得:x<m,解不等式②得:x>-1,由于原不等式組無解,所以m≤-1,故選A.【點睛】本題考查了一元一次不等式組無解問題,熟知一元一次不等式組解集的確定方法“大大取大,小小取小,大小小大中間找,大大小小無處找”是解題的關鍵.5、A【解析】
根據正數大于0,0大于負數,正數大于負數,比較即可【詳解】∵-3<-<0<0.3∴最大為0.3故選A.【點睛】本題考查實數比較大小,解題的關鍵是正確理解正數大于0,0大于負數,正數大于負數,本題屬于基礎題型.6、D【解析】
相反數的定義是:如果兩個數只有符號不同,我們稱其中一個數為另一個數的相反數,特別地,1的相反數還是1.【詳解】根據相反數的定義可得:-3的相反數是3.故選D.【點睛】本題考查相反數,題目簡單,熟記定義是關鍵.7、B【解析】試題解析:∵轉盤被等分成6個扇形區域,而黃色區域占其中的一個,∴指針指向黃色區域的概率=.故選A.考點:幾何概率.8、B【解析】
根據時針與分針相距的份數乘以每份的度數,可得答案.【詳解】解:3點40分時針與分針相距4+=份,30°×=130,故選B.【點睛】本題考查了鐘面角,確定時針與分針相距的份數是解題關鍵.9、D【解析】試題分析:將x與y的值代入各項檢驗即可得到結果.解:方程5x+2y=﹣9與下列方程構成的方程組的解為的是3x﹣4y=﹣1.故選D.點評:此題考查了二元一次方程組的解,方程組的解即為能使方程組中兩方程成立的未知數的值.10、C【解析】
根據折疊易得BD,AB長,利用相似可得BF長,也就求得了CF的長度,△CEF的面積=CF?CE.【詳解】解:由折疊的性質知,第二個圖中BD=AB-AD=4,第三個圖中AB=AD-BD=2,
因為BC∥DE,
所以BF:DE=AB:AD,
所以BF=2,CF=BC-BF=4,
所以△CEF的面積=CF?CE=8;
故選:C.點睛:
本題利用了:①折疊的性質:折疊是一種對稱變換,它屬于軸對稱,根據軸對稱的性質,折疊前后圖形的形狀和大小不變,位置變化,對應邊和對應角相等;②矩形的性質,平行線的性質,三角形的面積公式等知識點.二、填空題(共7小題,每小題3分,滿分21分)11、40°【解析】
直接利用三角形內角和定理得出∠6+∠7的度數,進而得出答案.【詳解】如圖所示:∠1+∠2+∠6=180°,∠3+∠4+∠7=180°,
∵∠1+∠2+∠3+∠4=220°,
∴∠1+∠2+∠6+∠3+∠4+∠7=360°,
∴∠6+∠7=140°,
∴∠5=180°-(∠6+∠7)=40°.
故答案為40°.【點睛】主要考查了三角形內角和定理,正確應用三角形內角和定理是解題關鍵.12、將線段AB繞點B逆時針旋轉90°,在向右平移2個單位長度【解析】
根據圖形的旋轉和平移性質即可解題.【詳解】解:將線段AB繞點B逆時針旋轉90°,在向右平移2個單位長度即可得到A′B′、【點睛】本題考查了旋轉和平移,屬于簡單題,熟悉旋轉和平移的概念是解題關鍵.13、60°【解析】
根據題意可得,根據已知條件計算即可.【詳解】根據題意可得:,故答案為60°【點睛】本題主要考查旋轉角的有關計算,關鍵在于識別那個是旋轉角.14、答案不唯一,如:(﹣1,﹣1),橫坐標和縱坐標都是負數即可.【解析】
讓橫坐標、縱坐標為負數即可.【詳解】在第三象限內點的坐標為:(﹣1,﹣1)(答案不唯一).故答案為答案不唯一,如:(﹣1,﹣1),橫坐標和縱坐標都是負數即可.15、108°【解析】
先求出正五邊形各個內角的度數,再求出∠BCD和∠BDC的度數,求出∠CBD,即可求出答案.【詳解】如圖:∵圖中是兩個全等的正五邊形,∴BC=BD,∴∠BCD=∠BDC,∵圖中是兩個全等的正五邊形,∴正五邊形每個內角的度數是=108°,∴∠BCD=∠BDC=180°-108°=72°,∴∠CBD=180°-72°-72°=36°,∴∠α=360°-36°-108°-108°=108°,故答案為108°.【點睛】本題考查了正多邊形和多邊形的內角和外角,能求出各個角的度數是解此題的關鍵.16、1【解析】在△AGF和△ACF中,,∴△AGF≌△ACF,∴AG=AC=4,GF=CF,則BG=AB?AG=6?4=2.又∵BE=CE,∴EF是△BCG的中位線,∴EF=BG=1.故答案是:1.17、12.【解析】
根據正n邊形的中心角的度數為進行計算即可得到答案.【詳解】解:根據正n邊形的中心角的度數為,則n=360÷30=12,故這個正多邊形的邊數為12,故答案為:12.【點睛】本題考查的是正多邊形內角和中心角的知識,掌握中心角的計算公式是解題的關鍵.三、解答題(共7小題,滿分69分)18、(1)=;(2)結論:AC2=AG?AH.理由見解析;(3)①△AGH的面積不變.②m的值為或2或8﹣4..【解析】
(1)證明∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,即可推出∠AHC=∠ACG;(2)結論:AC2=AG?AH.只要證明△AHC∽△ACG即可解決問題;(3)①△AGH的面積不變.理由三角形的面積公式計算即可;②分三種情形分別求解即可解決問題.【詳解】(1)∵四邊形ABCD是正方形,∴AB=CB=CD=DA=4,∠D=∠DAB=90°∠DAC=∠BAC=43°,∴AC=,∵∠DAC=∠AHC+∠ACH=43°,∠ACH+∠ACG=43°,∴∠AHC=∠ACG.故答案為=.(2)結論:AC2=AG?AH.理由:∵∠AHC=∠ACG,∠CAH=∠CAG=133°,∴△AHC∽△ACG,∴,∴AC2=AG?AH.(3)①△AGH的面積不變.理由:∵S△AGH=?AH?AG=AC2=×(4)2=1.∴△AGH的面積為1.②如圖1中,當GC=GH時,易證△AHG≌△BGC,可得AG=BC=4,AH=BG=8,∵BC∥AH,∴,∴AE=AB=.如圖2中,當CH=HG時,易證AH=BC=4,∵BC∥AH,∴=1,∴AE=BE=2.如圖3中,當CG=CH時,易證∠ECB=∠DCF=22.3.在BC上取一點M,使得BM=BE,∴∠BME=∠BEM=43°,∵∠BME=∠MCE+∠MEC,∴∠MCE=∠MEC=22.3°,∴CM=EM,設BM=BE=m,則CM=EMm,∴m+m=4,∴m=4(﹣1),∴AE=4﹣4(﹣1)=8﹣4,綜上所述,滿足條件的m的值為或2或8﹣4.【點睛】本題屬于四邊形綜合題,考查了正方形的性質,全等三角形的判定和性質,相似三角形的判定和性質等知識,解題的關鍵是靈活運用所學知識解決問題.19、(1)見解析;(2)△ADF的面積是.【解析】試題分析:(1)連接OD,CD,求出∠BDC=90°,根據OE∥AB和OA=OC求出BE=CE,推出DE=CE,根據SSS證△ECO≌△EDO,推出∠EDO=∠ACB=90°即可;
(2)過O作OM⊥AB于M,過F作FN⊥AB于N,求出OM=FN,求出BC、AC、AB的值,根據sin∠BAC=,求出OM,根據cos∠BAC=,求出AM,根據垂徑定理求出AD,代入三角形的面積公式求出即可.試題解析:(1)證明:連接OD,CD,∵AC是⊙O的直徑,∴∠CDA=90°=∠BDC,∵OE∥AB,CO=AO,∴BE=CE,∴DE=CE,∵在△ECO和△EDO中,∴△ECO≌△EDO,∴∠EDO=∠ACB=90°,即OD⊥DE,OD過圓心O,∴ED為⊙O的切線.(2)過O作OM⊥AB于M,過F作FN⊥AB于N,則OM∥FN,∠OMN=90°,∵OE∥AB,∴四邊形OMFN是矩形,∴FN=OM,∵DE=4,OC=3,由勾股定理得:OE=5,∴AC=2OC=6,∵OE∥AB,∴△OEC∽△ABC,∴,∴,∴AB=10,在Rt△BCA中,由勾股定理得:BC==8,sin∠BAC=,即,OM==FN,∵cos∠BAC=,∴AM=由垂徑定理得:AD=2AM=,即△ADF的面積是AD×FN=××=.答:△ADF的面積是.【點睛】考查了切線的性質和判定,勾股定理,三角形的面積,垂徑定理,直角三角形的斜邊上中線性質,全等三角形的性質和判定等知識點的運用,通過做此題培養了學生的分析問題和解決問題的能力.20、(1)(2),,144元【解析】
(1)利用待定系數法求解可得關于的函數解析式;(2)根據“總利潤每件的利潤銷售量”可得函數解析式,將其配方成頂點式,利用二次函數的性質進一步求解可得.【詳解】(1)設與的函數解析式為,將、代入,得:,解得:,所以與的函數解析式為;(2)根據題意知,,,當時,隨的增大而增大,,當時,取得最大值,最大值為144,答:每件銷售價為16元時,每天的銷售利潤最大,最大利潤是144元.【點睛】本題考查了二次函數的應用,解題的關鍵是熟練掌握待定系數法求函數解析式及根據相等關系列出二次函數解析式及二次函數的性質.21、(1);(2)【解析】
(1)用樹狀圖分3次實驗列舉出所有情況,再看3輛車都選擇A通道通過的情況數占總情況數的多少即可;
(2)由(1)可知所有可能的結果數目,再看至少有兩輛汽車選擇B通道通過的情況數占總情況數的多少即可.【詳解】解:(1)畫樹狀圖得:共8種情況,甲、乙、丙三輛車都選擇A通道通過的情況數有1種,所以都選擇A通道通過的概率為,故答案為:;(2)∵共有8種等可能的情況,其中至少有兩輛汽車選擇B通道通過的有4種情況,∴至少有兩輛汽車選擇B通道通過的概率為.【點睛】考查了概率的求法;用到的知識點為:概率=所求情況數與總情況數之比;得到所求的情況數是解決本題的關鍵.22、(1)48°(1)證明見解析(3)【解析】
(1)連接CD,根據圓周角定理和垂直的定義可得結論;
(1)先根據等腰三角形的性質得:∠ABE=∠AEB,再證明∠BCG=∠DAC,可得,則所對的圓周角相等,根據同弧所對的圓周角和圓心角的關系可得結論;
(3)過O作OG⊥AB于G,證明△COF≌△OAG,則OG=CF=x,AG=OF,設OF=a,則OA=OC=1x-a,根據勾股定理列方程得:(1x-a)1=x1+a1,則a=x,代入面積公式可得結論.【詳解】(1)連接CD,∵AD是⊙O的直徑,∴∠ACD=90°,∴∠ACB+∠BCD=90°,∵AD⊥CG,∴∠AFG=∠G+∠BAD=90°,∵∠BAD=∠BCD,∴∠ACB=∠G=48°;(1)∵AB=AE,∴∠ABE=∠AEB,∵∠ABC=∠G+∠BCG,∠AEB=∠ACB+∠DAC,由(1)得:∠G=∠ACB,∴∠BCG=∠DAC,∴,∵AD是⊙O的直徑,AD⊥PC,∴,∴,∴∠BAD=1∠DAC,∵∠COF=1∠DAC,∴∠BAD=∠C
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 2025年紡織服裝制造業智能化生產智能服裝生產設備維護與保養報告
- 商業銀行數字化轉型對金融監管的影響與2025年成效評估報告
- 2025年遠程醫療助力偏遠地區醫療服務均等化的政策研究
- 企業工作環境的數字化改進路徑探討
- 基于用戶需求的2025年家用醫療器械市場前景預測
- 以用戶為中心探索智慧家居設計的模擬實踐-基于數子技術的探討
- Unit 6 Rain or Shine Section A 1a-1d 課件 2024-2025學年英語人教版7年級下冊
- 兒童樂園項目區域人口及消費水平分析
- 建筑施工安全管理信息化2025年智能安全防護設備應用市場分析報告
- 城市創新生態圈數字孿生技術引領的IP發展新方向
- 股權無償劃轉協議書
- 浙江省Z20聯盟(浙江省名校新高考研究聯盟)2025屆高三第三次聯考數學(含答案)
- 食品配送服務質量保障措施
- 山東煙臺長島第一實驗學校2024-2025學年道德與法治七下第四單元 生活在法治社會 測試卷 (含答案)
- 區塊鏈技術對傳統行業的顛覆與重塑
- 完整的2025年入團考試試題及答案
- 用人施工合同協議書
- 夫妻忠誠協議書合同
- 房地產投資(合作)協議(書)范本5篇
- 《體育競技知識講解》課件
- 藝考調式分析試題及答案
評論
0/150
提交評論