




版權說明:本文檔由用戶提供并上傳,收益歸屬內容提供方,若內容存在侵權,請進行舉報或認領
文檔簡介
陜西省西安市(師大附中)2023-2024學年中考數學五模試卷注意事項:1.答卷前,考生務必將自己的姓名、準考證號填寫在答題卡上。2.回答選擇題時,選出每小題答案后,用鉛筆把答題卡上對應題目的答案標號涂黑,如需改動,用橡皮擦干凈后,再選涂其它答案標號。回答非選擇題時,將答案寫在答題卡上,寫在本試卷上無效。3.考試結束后,將本試卷和答題卡一并交回。一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1.某排球隊名場上隊員的身高(單位:)是:,,,,,.現用一名身高為的隊員換下場上身高為的隊員,與換人前相比,場上隊員的身高()A.平均數變小,方差變小 B.平均數變小,方差變大C.平均數變大,方差變小 D.平均數變大,方差變大2.如圖,AB是⊙O的切線,半徑OA=2,OB交⊙O于C,∠B=30°,則劣弧的長是()A.π B. C.π D.π3.下列運算正確的是()A.6-3=3B.-32=﹣3C.a?a2=a2D.(2a4.下列由左邊到右邊的變形,屬于因式分解的是().A.(x+1)(x-1)=x2-1B.x2-2x+1=x(x-2)+1C.a2-b2=(a+b)(a-b)D.mx+my+nx+ny=m(x+y)+n(x+y)5.如圖給定的是紙盒的外表面,下面能由它折疊而成的是()A. B. C. D.6.如圖,已知是中的邊上的一點,,的平分線交邊于,交于,那么下列結論中錯誤的是()A.△BAC∽△BDA B.△BFA∽△BECC.△BDF∽△BEC D.△BDF∽△BAE7.不等式3x≥x-5的最小整數解是()A.-3 B.-2 C.-1 D.28.如圖,等邊△ABC內接于⊙O,已知⊙O的半徑為2,則圖中的陰影部分面積為(
)A.
B.
C.
D.9.在△ABC中,∠C=90°,AC=9,sinB=,則AB=(
)A.15
B.12
C.9
D.610.如圖,排球運動員站在點O處練習發球,將球從O點正上方2m的A處發出,把球看成點,其運行的高度y(m)與運行的水平距離x(m)滿足關系式y=a(x﹣k)2+h.已知球與D點的水平距離為6m時,達到最高2.6m,球網與D點的水平距離為9m.高度為2.43m,球場的邊界距O點的水平距離為18m,則下列判斷正確的是()A.球不會過網 B.球會過球網但不會出界C.球會過球網并會出界 D.無法確定11.如圖,在ABCD中,E為CD上一點,連接AE、BD,且AE、BD交于點F,DE:EC=2:3,則S△DEF:S△ABF=()A.2:3 B.4:9 C.2:5 D.4:2512.下列各式正確的是()A.﹣(﹣2018)=2018 B.|﹣2018|=±2018 C.20180=0 D.2018﹣1=﹣2018二、填空題:(本大題共6個小題,每小題4分,共24分.)13.在平面直角坐標系中,將點A(﹣3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應的點A′的坐標是_____.14.將多項式因式分解的結果是.15.如圖,在菱形ABCD中,對角線AC、BD相交于點O,點E是線段BO上的一個動點,點F為射線DC上一點,若∠ABC=60°,∠AEF=120°,AB=4,則EF可能的整數值是_____.16.已知圓錐的高為3,底面圓的直徑為8,則圓錐的側面積為_____.17.矩形ABCD中,AB=6,BC=8.點P在矩形ABCD的內部,點E在邊BC上,滿足△PBE∽△DBC,若△APD是等腰三角形,則PE的長為數___________.18.如圖,已知正方形ABCD的邊長為4,⊙B的半徑為2,點P是⊙B上的一個動點,則PD﹣PC的最大值為_____.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19.(6分)為進一步深化基教育課程改革,構建符合素質教育要求的學校課程體系,某學校自主開發了A書法、B閱讀,C足球,D器樂四門校本選修課程供學生選擇,每門課程被選到的機會均等.學生小紅計劃選修兩門課程,請寫出所有可能的選法;若學生小明和小剛各計劃送修一門課程,則他們兩人恰好選修同一門課程的概率為多少?20.(6分)我市某中學舉行“中國夢?校園好聲音”歌手大賽,高、初中部根據初賽成績,各選出5名選手組成初中代表隊和高中代表隊參加學校決賽.兩個隊各選出的5名選手的決賽成績如圖所示.根據圖示填寫下表;
平均數(分)
中位數(分)
眾數(分)
初中部
85
高中部
85
100
(2)結合兩隊成績的平均數和中位數,分析哪個隊的決賽成績較好;計算兩隊決賽成績的方差并判斷哪一個代表隊選手成績較為穩定.21.(6分)甲乙兩名同學做摸球游戲,他們把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中.求從袋中隨機摸出一球,標號是1的概率;從袋中隨機摸出一球后放回,搖勻后再隨機摸出一球,若兩次摸出的球的標號之和為偶數時,則甲勝;若兩次摸出的球的標號之和為奇數時,則乙勝;試分析這個游戲是否公平?請說明理由.22.(8分)在星期一的第八節課,我校體育老師隨機抽取了九年級的總分學生進行體育中考的模擬測試,并對成績進行統計分析,繪制了頻數分布表和統計圖,按得分劃分成A、B、C、D、E、F六個等級,并繪制成如下兩幅不完整的統計圖表.等級得分x(分)頻數(人)A95<x≤1004B90<x≤95mC85<x≤90nD80<x≤8524E75<x≤808F70<x≤754請你根據圖表中的信息完成下列問題:(1)本次抽樣調查的樣本容量是.其中m=,n=.(2)扇形統計圖中,求E等級對應扇形的圓心角α的度數;(3)我校九年級共有700名學生,估計體育測試成績在A、B兩個等級的人數共有多少人?(4)我校決定從本次抽取的A等級學生(記為甲、乙、丙、丁)中,隨機選擇2名成為學校代表參加全市體能競賽,請你用列表法或畫樹狀圖的方法,求恰好抽到甲和乙的概率.23.(8分)已知:如圖,在菱形ABCD中,F為邊BC的中點,DF與對角線AC交于點M,過M作ME⊥CD于點E,∠1=∠1.(1)若CE=1,求BC的長;(1)求證:AM=DF+ME.24.(10分)先化簡,再求值:(1+)÷,其中x=+1.25.(10分)如圖,已知AD是的中線,M是AD的中點,過A點作,CM的延長線與AE相交于點E,與AB相交于點F.(1)求證:四邊形是平行四邊形;(2)如果,求證四邊形是矩形.26.(12分)在平面直角坐標系中,拋物線經過點A(-1,0)和點B(4,5).(1)求該拋物線的函數表達式.(2)求直線AB關于x軸對稱的直線的函數表達式.(3)點P是x軸上的動點,過點P作垂直于x軸的直線l,直線l與該拋物線交于點M,與直線AB交于點N.當PM<PN時,求點P的橫坐標的取值范圍.27.(12分)某區教育局為了解今年九年級學生體育測試情況,隨機抽查了某班學生的體育測試成績為樣本,按A、B、C、D四個等級進行統計,并將統計結果繪制成如下的統計圖,請你結合圖中所給信息解答下列問題:說明:A級:90分~100分;B級:75分~89分;C級:60分~74分;D級:60分以下(1)樣本中D級的學生人數占全班學生人數的百分比是;(2)扇形統計圖中A級所在的扇形的圓心角度數是;(3)請把條形統計圖補充完整;(4)若該校九年級有500名學生,請你用此樣本估計體育測試中A級和B級的學生人數之和.
參考答案一、選擇題(本大題共12個小題,每小題4分,共48分.在每小題給出的四個選項中,只有一項是符合題目要求的.)1、A【解析】分析:根據平均數的計算公式進行計算即可,根據方差公式先分別計算出甲和乙的方差,再根據方差的意義即可得出答案.詳解:換人前6名隊員身高的平均數為==188,方差為S2==;換人后6名隊員身高的平均數為==187,方差為S2==∵188>187,>,∴平均數變小,方差變小,故選:A.點睛:本題考查了平均數與方差的定義:一般地設n個數據,x1,x2,…xn的平均數為,則方差S2=[(x1-)2+(x2-)2+…+(xn-)2],它反映了一組數據的波動大小,方差越大,波動性越大,反之也成立.2、C【解析】
由切線的性質定理得出∠OAB=90°,進而求出∠AOB=60°,再利用弧長公式求出即可.【詳解】∵AB是⊙O的切線,∴∠OAB=90°,∵半徑OA=2,OB交⊙O于C,∠B=30°,∴∠AOB=60°,∴劣弧AC?的長是:=,故選:C.【點睛】本題考查了切線的性質,圓周角定理,弧長的計算,解題的關鍵是先求出角度再用弧長公式進行計算.3、D【解析】試題解析:A.6與3不是同類二次根式,不能合并,故該選項錯誤;B.(-3)2C.a?aD.(2a故選D.4、C【解析】
因式分解是把一個多項式化為幾個整式的積的形式,據此進行解答即可.【詳解】解:A、B、D三個選項均不是把一個多項式化為幾個整式的積的形式,故都不是因式分解,只有C選項符合因式分解的定義,故選擇C.【點睛】本題考查了因式分解的定義,牢記定義是解題關鍵.5、B【解析】
將A、B、C、D分別展開,能和原圖相對應的即為正確答案:【詳解】A、展開得到,不能和原圖相對應,故本選項錯誤;B、展開得到,能和原圖相對,故本選項正確;C、展開得到,不能和原圖相對應,故本選項錯誤;D、展開得到,不能和原圖相對應,故本選項錯誤.故選B.6、C【解析】
根據相似三角形的判定,采用排除法,逐項分析判斷.【詳解】∵∠BAD=∠C,∠B=∠B,∴△BAC∽△BDA.故A正確.∵BE平分∠ABC,∴∠ABE=∠CBE,∴△BFA∽△BEC.故B正確.∴∠BFA=∠BEC,∴∠BFD=∠BEA,∴△BDF∽△BAE.故D正確.而不能證明△BDF∽△BEC,故C錯誤.故選C.【點睛】本題考查相似三角形的判定.識別兩三角形相似,除了要掌握定義外,還要注意正確找出兩三角形的對應邊和對應角.7、B【解析】
先求出不等式的解集,然后從解集中找出最小整數即可.【詳解】∵3x≥x-5,∴3x-x≥-5,∴x≥-5∴不等式3x≥x-5的最小整數解是x=-2.故選B.【點睛】本題考查了一元一次不等式的解法,熟練掌握解一元一次不等式的步驟是解答本題的關鍵.最后一步系數化為1時,如果未知數的系數是負數,則不等號的方向要改變,如果系數是正數,則不等號的方不變.8、A【解析】解:連接OB、OC,連接AO并延長交BC于H,則AH⊥BC.∵△ABC是等邊三角形,∴BH=AB=,OH=1,∴△OBC的面積=×BC×OH=,則△OBA的面積=△OAC的面積=△OBC的面積=,由圓周角定理得,∠BOC=120°,∴圖中的陰影部分面積==.故選A.點睛:本題考查的是三角形的外接圓與外心、扇形面積的計算,掌握等邊三角形的性質、扇形面積公式是解題的關鍵.9、A【解析】
根據三角函數的定義直接求解.【詳解】在Rt△ABC中,∠C=90°,AC=9,∵,∴,解得AB=1.故選A10、C【解析】分析:(1)將點A(0,2)代入求出a的值;分別求出x=9和x=18時的函數值,再分別與2.43、0比較大小可得.詳解:根據題意,將點A(0,2)代入得:36a+2.6=2,解得:∴y與x的關系式為當x=9時,∴球能過球網,當x=18時,∴球會出界.故選C.點睛:考查二次函數的應用題,求范圍的問題,可以利用臨界點法求出自變量的值,根據題意確定范圍.11、D【解析】試題分析:先根據平行四邊形的性質及相似三角形的判定定理得出△DEF∽△BAF,從而DE:AB=DE:DC=2:5,所以S△DEF:S△ABF=4:25試題解析:∵四邊形ABCD是平行四邊形,∴AB∥CD,BA=DC∴∠EAB=∠DEF,∠AFB=∠DFE,∴△DEF∽△BAF,∴DE:AB=DE:DC=2:5,∴S△DEF:S△ABF=4:25,考點:1.相似三角形的判定與性質;2.三角形的面積;3.平行四邊形的性質.12、A【解析】
根據去括號法則、絕對值的性質、零指數冪的計算法則及負整數指數冪的計算法則依次計算各項即可解答.【詳解】選項A,﹣(﹣2018)=2018,故選項A正確;選項B,|﹣2018|=2018,故選項B錯誤;選項C,20180=1,故選項C錯誤;選項D,2018﹣1=,故選項D錯誤.故選A.【點睛】本題去括號法則、絕對值的性質、零指數冪的計算法則及負整數指數冪的計算法則,熟知去括號法則、絕對值的性質、零指數冪及負整數指數冪的計算法則是解決問題的關鍵.二、填空題:(本大題共6個小題,每小題4分,共24分.)13、(0,0)【解析】
根據坐標的平移規律解答即可.【詳解】將點A(-3,2)向右平移3個單位長度,再向下平移2個單位長度,那么平移后對應的點A′的坐標是(-3+3,2-2),即(0,0),故答案為(0,0).【點睛】此題主要考查坐標與圖形變化-平移.平移中點的變化規律是:橫坐標右移加,左移減;縱坐標上移加,下移減.14、m(m+n)(m﹣n).【解析】試題分析:原式==m(m+n)(m﹣n).故答案為:m(m+n)(m﹣n).考點:提公因式法與公式法的綜合運用.15、2,3,1.【解析】分析:根據題意得出EF的取值范圍,從而得出EF的值.詳解:∵AB=1,∠ABC=60°,∴BD=1,當點E和點B重合時,∠FBD=90°,∠BDC=30°,則EF=1;當點E和點O重合時,∠DEF=30°,則△EFD為等腰三角形,則EF=FD=2,∴EF可能的整數值為2、3、1.點睛:本題主要考查的就是菱形的性質以及直角三角形的勾股定理,屬于中等難度的題型.解決這個問題的關鍵就是找出當點E在何處時取到最大值和最小值,從而得出答案.16、20π【解析】
利用勾股定理可求得圓錐的母線長,然后根據圓錐的側面積公式進行計算即可.【詳解】底面直徑為8,底面半徑=4,底面周長=8π,由勾股定理得,母線長==5,故圓錐的側面積=×8π×5=20π,故答案為:20π.【點睛】本題主要考查了圓錐的側面積的計算方法.解題的關鍵是熟記圓錐的側面展開扇形的面積計算方法.17、3或1.2【解析】【分析】由△PBE∽△DBC,可得∠PBE=∠DBC,繼而可確定點P在BD上,然后再根據△APD是等腰三角形,分DP=DA、AP=DP兩種情況進行討論即可得.【詳解】∵四邊形ABCD是矩形,∴∠BAD=∠C=90°,CD=AB=6,∴BD=10,∵△PBE∽△DBC,∴∠PBE=∠DBC,∴點P在BD上,如圖1,當DP=DA=8時,BP=2,∵△PBE∽△DBC,∴PE:CD=PB:DB=2:10,∴PE:6=2:10,∴PE=1.2;如圖2,當AP=DP時,此時P為BD中點,∵△PBE∽△DBC,∴PE:CD=PB:DB=1:2,∴PE:6=1:2,∴PE=3;綜上,PE的長為1.2或3,故答案為:1.2或3.【點睛】本題考查了相似三角形的性質,等腰三角形的性質,矩形的性質等,確定出點P在線段BD上是解題的關鍵.18、1【解析】分析:由PD?PC=PD?PG≤DG,當點P在DG的延長線上時,PD?PC的值最大,最大值為DG=1.詳解:在BC上取一點G,使得BG=1,如圖,∵,,∴,∵∠PBG=∠PBC,∴△PBG∽△CBP,∴,∴PG=PC,當點P在DG的延長線上時,PD?PC的值最大,最大值為DG==1.故答案為1點睛:本題考查圓綜合題、正方形的性質、相似三角形的判定和性質等知識,解題的關鍵是學會構建相似三角形解決問題,學會用轉化的思想思考問題,把問題轉化為兩點之間線段最短解決,題目比較難,屬于中考壓軸題.三、解答題:(本大題共9個小題,共78分,解答應寫出文字說明、證明過程或演算步驟.19、(1)答案見解析;(2)【解析】分析:(1)直接列舉出所有可能的結果即可.(2)畫樹狀圖展示所有16種等可能的結果數,再找出他們兩人恰好選修同一門課程的結果數,然后根據概率公式求解.詳解:(1)學生小紅計劃選修兩門課程,她所有可能的選法有:A書法、B閱讀;A書法、C足球;A書法、D器樂;B閱讀,C足球;B閱讀,D器樂;C足球,D器樂.共有6種等可能的結果數;(2)畫樹狀圖為:共有16種等可能的結果數,其中他們兩人恰好選修同一門課程的結果數為4,所以他們兩人恰好選修同一門課程的概率點睛:本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式計算事件A或事件B的概率.20、(1)
平均數(分)
中位數(分)
眾數(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成績好些(3)初中代表隊選手成績較為穩定【解析】解:(1)填表如下:
平均數(分)
中位數(分)
眾數(分)
初中部
85
85
85
高中部
85
80
100
(2)初中部成績好些.∵兩個隊的平均數都相同,初中部的中位數高,∴在平均數相同的情況下中位數高的初中部成績好些.(3)∵,,∴<,因此,初中代表隊選手成績較為穩定.(1)根據成績表加以計算可補全統計表.根據平均數、眾數、中位數的統計意義回答.(2)根據平均數和中位數的統計意義分析得出即可.(3)分別求出初中、高中部的方差比較即可.21、(1);(2)這個游戲不公平,理由見解析.【解析】
(1)由把三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中,直接利用概率公式求解即可求得答案;(2)首先根據題意畫出樹狀圖,然后由樹狀圖求得所有等可能的結果與甲勝,乙勝的情況,即可求得求概率,比較大小,即可知這個游戲是否公平.【詳解】解:(1)由于三個分別標有1,2,3的大小和形狀完全相同的小球放在一個不透明的口袋中,故從袋中隨機摸出一球,標號是1的概率為:;(2)這個游戲不公平.畫樹狀圖得:∵共有9種等可能的結果,兩次摸出的球的標號之和為偶數的有5種情況,兩次摸出的球的標號之和為奇數的有4種情況,∴P(甲勝)=,P(乙勝)=.∴P(甲勝)≠P(乙勝),故這個游戲不公平.【點睛】本題考查的是游戲公平性的判斷.判斷游戲公平性就要計算每個事件的概率,概率相等就公平,否則就不公平.22、(1)80,12,28;(2)36°;(3)140人;(4)【解析】
(1)用D組的頻數除以它所占的百分比得到樣本容量;用樣本容量乘以B組所占的百分比得到m的值,然后用樣本容量分別減去其它各組的頻數即可得到n的值;(2)用E組所占的百分比乘以360°得到α的值;(3)利用樣本估計整體,用700乘以A、B兩組的頻率和可估計體育測試成績在A、B兩個等級的人數;(4)畫樹狀圖展示所有12種等可能的結果數,再找出恰好抽到甲和乙的結果數,然后根據概率公式求解.【詳解】(1)24÷30%=80,所以樣本容量為80;m=80×15%=12,n=80﹣12﹣4﹣24﹣8﹣4=28;故答案為80,12,28;(2)E等級對應扇形的圓心角α的度數=×360°=36°;(3)700×=140,所以估計體育測試成績在A、B兩個等級的人數共有140人;(4)畫樹狀圖如下:共12種等可能的結果數,其中恰好抽到甲和乙的結果數為2,所以恰好抽到甲和乙的概率=.【點睛】本題考查了列表法與樹狀圖法:利用列表法或樹狀圖法展示所有等可能的結果n,再從中選出符合事件A或B的結果數目m,然后利用概率公式求事件A或B的概率.也考查了統計圖.23、(1)1;(1)見解析.【解析】試題分析:(1)根據菱形的對邊平行可得AB∥CD,再根據兩直線平行,內錯角相等可得∠1=∠ACD,所以∠ACD=∠1,根據等角對等邊的性質可得CM=DM,再根據等腰三角形三線合一的性質可得CE=DE,然后求出CD的長度,即為菱形的邊長BC的長度;
(1)先利用“邊角邊”證明△CEM和△CFM全等,根據全等三角形對應邊相等可得ME=MF,延長AB交DF于點G,然后證明∠1=∠G,根據等角對等邊的性質可得AM=GM,再利用“角角邊”證明△CDF和△BGF全等,根據全等三角形對應邊相等可得GF=DF,最后結合圖形GM=GF+MF即可得證.試題解析:(1)∵四邊形ABCD是菱形,
∴AB∥CD,
∴∠1=∠ACD,
∵∠1=∠1,
∴∠ACD=∠1,
∴MC=MD,
∵ME⊥CD,
∴CD=1CE,
∵CE=1,
∴CD=1,
∴BC=CD=1;
(1)AM=DF+ME證明:如圖,∵F為邊BC的中點,
∴BF=CF=BC,
∴CF=CE,
在菱形ABCD中,AC平分∠BCD,
∴∠ACB=∠ACD,
在△CEM和△CFM中,
∵,
∴△CEM≌△CFM(SAS),
∴ME=MF,
延長AB交DF的延長線于點G,
∵AB∥CD,
∴∠G=∠1,
∵∠1=∠1,
∴∠1=∠G,
∴AM=MG,
在△CDF和△BGF中,
∵∴△CDF≌△BGF(AAS),
∴GF=DF,
由圖形可知,GM=GF+MF,
∴AM=DF+ME.24、,1+【解析】
運用公式化簡,再代入求值.【詳解】原式===,當x=+1時,原式=.【點睛】考查分式的化簡求值、整式的化簡求值,解答本題的關鍵是明確它們各自的計算方法.25、(1)見解析;(2)見解析.【解析】
(1)先判定,可得,再根據是的中線,即可得到,依據,即可得出四邊形是平行四邊形;(2)先判定,即可得到,依據,可得根據是的中
溫馨提示
- 1. 本站所有資源如無特殊說明,都需要本地電腦安裝OFFICE2007和PDF閱讀器。圖紙軟件為CAD,CAXA,PROE,UG,SolidWorks等.壓縮文件請下載最新的WinRAR軟件解壓。
- 2. 本站的文檔不包含任何第三方提供的附件圖紙等,如果需要附件,請聯系上傳者。文件的所有權益歸上傳用戶所有。
- 3. 本站RAR壓縮包中若帶圖紙,網頁內容里面會有圖紙預覽,若沒有圖紙預覽就沒有圖紙。
- 4. 未經權益所有人同意不得將文件中的內容挪作商業或盈利用途。
- 5. 人人文庫網僅提供信息存儲空間,僅對用戶上傳內容的表現方式做保護處理,對用戶上傳分享的文檔內容本身不做任何修改或編輯,并不能對任何下載內容負責。
- 6. 下載文件中如有侵權或不適當內容,請與我們聯系,我們立即糾正。
- 7. 本站不保證下載資源的準確性、安全性和完整性, 同時也不承擔用戶因使用這些下載資源對自己和他人造成任何形式的傷害或損失。
最新文檔
- 四川省達州開江縣聯考2025屆第二學期期末初三質量檢測試題化學試題含解析
- 商丘市重點中學2024-2025學年高三第五次模擬考試(物理試題文)試題含解析
- 無錫太湖學院《語言研究項目》2023-2024學年第二學期期末試卷
- 山東濟南市歷下區2024-2025學年初三下學期大聯考(一)英語試題含答案
- 玉林師范學院《生物化學下》2023-2024學年第二學期期末試卷
- 物業細節決定成敗培訓
- 離心泵結構培訓
- 2025年集裝箱水泥運輸合同模板
- 2025屋頂廣告牌建設合同
- 2025關于貨車租賃合同
- Q∕SY 126-2014 油田水處理用緩蝕阻垢劑技術規范
- 環保管理制度(適用于軟件企業)
- 全國青少年機器人技術等價考試三級全套課件
- 適老化改造培訓課件(PPT 31頁)
- DB 33-T 1015-2021居住建筑節能設計標準(高清正版)
- 鋼結構門式剛架廠房設計土木工程畢業設計
- 幼兒園兒歌100首
- 光伏并網逆變器調試報告正式版
- 市政道路大中修工程管理指引
- SF_T 0097-2021 醫療損害司法鑒定指南_(高清版)
- 易學書籍大全291本
評論
0/150
提交評論